Elementary Matrices and Frame Sequences

- Elementary Matrices
- Fundamental Theorem on Elementary Matrices
- A certain 6-frame sequence.
- Frame Sequence Details
- Summary

Elementary Matrices

An elementary matrix E is the result of applying a combination, multiply or swap rule to the identity matrix. The computer algebra system maple displays typical 4×4 elementary matrices (C=Combination, M=Multiply, S=Swap) as follows.

```
with(linalg):
Id:=diag(1,1,1,1);
C:=addrow(Id,2,3,c);
M:=mulrow(Id,3,m);
S:=swaprow(Id,1,4);
with(LinearAlgebra):
Id:=IdentityMatrix(4);
C:=RowOperation(Id,[3,2],c);
M:=RowOperation(Id,3,m);
S:=RowOperation(Id,[4,1]);
```

The answers:

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & c & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$S = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Constructing elementary matrices E

Mult Change a one in the identity matrix to symbol $m \neq 0$.

Combo Change a zero in the identity matrix to symbol c.

Swap Interchange two rows of the identity matrix.

Constructing E^{-1} from elementary matrix E

Mult Change diagonal multiplier $m \neq 0$ in E to 1/m.

Combo Change multiplier c in E to -c.

Swap The inverse of E is E itself.

Fundamental Theorem on Elementary Matrices

Theorem 1 (The rref and elementary matrices)

Let A be a given matrix of row dimension n. Then there exist $n \times n$ elementary matrices E_1, E_2, \ldots, E_k such that

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

Details of Proof

The result is the observation that left multiplication of matrix A by elementary matrix E gives the answer EA for the corresponding multiply, combination or swap operation. The matrices E_1, E_2, \ldots represent the multiply, combination and swap operations performed in the frame sequence which take the First Frame into the Last Frame, or equivalently, original matrix A into $\mathbf{rref}(A)$.

A certain 6-frame sequence

$$A_1=\left(egin{array}{ccc} 1 & 2 & 3 \ 2 & 4 & 0 \ 3 & 6 & 3 \end{array}
ight)$$

Frame 1, original matrix.

$$A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -6 \\ 3 & 6 & 3 \end{pmatrix}$$
 Frame 2, combo(1,2,-2).

$$A_3 = \left(egin{array}{ccc} 1 & 2 & 3 \ 0 & 0 & 1 \ 3 & 6 & 3 \end{array}
ight)$$

Frame 3, mult(2,-1/6).

$$A_4 = \left(egin{array}{ccc} 1 & 2 & 3 \ 0 & 0 & 1 \ 0 & 0 & -6 \end{array}
ight) \qquad ext{Frame 4, combo(1,3,-3)}.$$

$$A_5=\left(egin{array}{ccc} 1 & 2 & 3 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

Frame 5, combo(2,3,-6).

$$A_6=\left(egin{array}{ccc} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

Frame 6, combo(2,1,-3). Found $rref(A_1)$.

Continued

The corresponding 3×3 elementary matrices are

$$E_1 = \left(egin{array}{ccc} 1 & 0 & 0 \ -2 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \qquad ext{Frame 2, combo(1,2,-2) applied to } I.$$

$$E_2=\left(egin{array}{ccc}1&0&0\0&-1/6&0\0&0&1\end{array}
ight)\;\;$$
 Frame 3, mult(2,-1/6) applied to $I.$

$$E_3=\left(egin{array}{ccc}1&0&0\0&1&0\-3&0&1\end{array}
ight)$$
 Frame 4, combo(1,3,-3) applied to $I.$

$$E_4=\left(egin{array}{ccc} 1&0&0\0&1&0\0&-6&1 \end{array}
ight)$$
 Frame 5, combo(2,3,-6) applied to I .

$$E_5=\left(egin{array}{ccc}1&-3&0\0&1&0\0&0&1\end{array}
ight)$$
 Frame 6, combo(2,1,-3) applied to I .

Frame Sequence Details _

$A_2=E_1A_1$	Frame 2, E_1 equals combo(1,2,-2) on I .
$A_3=E_2A_2$	Frame 3, E_2 equals mult(2,-1/6) on I .
$A_4=E_3A_3$	Frame 4, E_3 equals combo(1,3,-3) on I .
$A_5=E_4A_4$	Frame 5, E_4 equals combo(2,3,-6) on I .
$A_6=E_5A_5$	Frame 6, E_5 equals combo(2,1,-3) on I .
$A_6 = E_5 E_4 E_3 E_2 E_1 A_1$	Summary frames 1-6.

Then

$$\operatorname{rref}(A_1) = E_5 E_4 E_3 E_2 E_1 A_1,$$

which is the result of the Theorem.

Summary

The summary:

$$A_6 = egin{pmatrix} 1 - 3 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -6 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -3 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & -rac{1}{6} & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} A_1$$

Because $A_6 = \operatorname{rref}(A_1)$, the above equation gives the inverse relationship

$$A_1 = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1} \operatorname{rref}(A_1).$$

Each inverse matrix is simplified by the rules for constructing E^{-1} from elementary matrix E, the result being

$$A_1 = egin{pmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & -6 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 3 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 6 & 1 \end{pmatrix} egin{pmatrix} 1 & 3 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} ext{rref}(A_1)$$

