
Chapter 9

Eigenanalysis

Contents

9.1 Eigenanalysis I . . . . . . . . . . . . . . . . . . 491
9.2 Eigenanalysis II . . . . . . . . . . . . . . . . . 511
9.3 Advanced Topics in Linear Algebra . . . . . 522
9.4 Kepler’s laws . . . . . . . . . . . . . . . . . . . 537

This presentation of matrix eigenanalysis treats the subject in depth
for a 3× 3 matrix A. The generalization to an n× n matrix A is easily
supplied by the reader.

9.1 Eigenanalysis I

Treated here is eigenanalysis for matrix equations. The topics are eige-
nanalysis, eigenvalue, eigenvector, eigenpair and diagonalization.

What’s Eigenanalysis?

Matrix eigenanalysis is a computational theory for the matrix equation
y = Ax. Here, we assume A is a 3× 3 matrix.

The basis of eigenanalysis is Fourier’s Model:

x = c1v1 + c2v2 + c3v3 implies
y = Ax

= c1λ1v1 + c2λ2v2 + c3λ3v3.
(1)

These relations can be written as a single equation:

A (c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3.

The scale factors λ1, λ2, λ3 and independent vectors v1, v2, v3 depend
only on A. Symbols c1, c2, c3 stand for arbitrary numbers. This implies
variable x exhausts all possible 3-vectors in R3 and v1, v2, v3 is a basis
for R3. Fourier’s model is a replacement process:



9.1 Eigenanalysis I 499

To compute Ax from x = c1v1 + c2v2 + c3v3, replace each
vector vi by its scaled version λivi.

Fourier’s model is said to hold provided there exist λ1, λ2, λ3 and in-
dependent vectors v1, v2, v3 satisfying (1). It is known that Fourier’s
model fails for certain matrices A, for example,

A =

 0 0 1
0 0 0
0 0 0

 .
Powers and Fourier’s Model. Equation (1) applies to compute pow-
ers An of a matrix A using only the basic vector space toolkit. To
illustrate, only the vector toolkit for R3 is used in computing

A5x = x1λ
5
1v1 + x2λ

5
2v2 + x3λ

5
3v3.

This calculation does not depend upon finding previous powers A2, A3,
A4 as would be the case by using matrix multiply.

Fourier’s model can reduce computational effort. Matrix 3 × 3 multi-
plication to produce yk = Akx requires 9k multiply operations whereas
Fourier’s 3× 3 model gives the answer with 3k + 9 multiply operations.

Fourier’s model illustrated. Let

A =

 1 3 0
0 2 −1
0 0 −5


λ1 = 1, λ2 = 2, λ3 = −5,

v1 =

 1
0
0

 , v2 =

 3
1
0

 , v3 =

 1
−2
−14

 .
Then Fourier’s model holds (details later) and

x = c1

 1
0
0

 + c2

 3
1
0

 + c3

 1
−2
−14

 implies

Ax = c1(1)

 1
0
0

 + c2(2)

 3
1
0

 + c3(−5)

 1
−2
−14


Eigenanalysis might be called the method of simplifying coordinates. The
nomenclature is justified, because Fourier’s model computes y = Ax by
scaling independent vectors v1, v2, v3, which is a triad or coordinate
system.

Success stories for eigenanalysis include geometric problems, systems of
differential equations representing mechanical systems, chemical kinetics,
electrical networks, and heat and wave partial differential equations.

In summary:
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The subject of eigenanalysis discovers a coordinate system
and scale factors such that Fourier’s model holds. Fourier’s
model simplifies the matrix equation y = Ax.

Differential Equations and Fourier’s Model. Systems of differential
equations can be solved using Fourier’s model, giving a compact and
elegant formula for the general solution. An example:

x′1 = x1 + 3x2,
x′2 = 2x2 − x3,
x′3 = − 5x3.

The matrix form is x′ = Ax, where A is the same matrix used in the
Fourier model illustration of the previous paragraph.

Fourier’s idea of re-scaling applies as well to differential equations, in the
following context. First, expand the initial condition x(0) in terms of
basis elements v1, v2, v3:

x(0) = c1v1 + c2v2 + c3.v3.

Then the general solution of x′ = Ax is given by replacing each vi by
the re-scaled vector eλitvi, giving the formula

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3.

For the illustration here, the result is x1

x2

x3

 = c1e
t

 1
0
0

+ c2e
2t

 3
1
0

+ c3e
−5t

 1
−2
−14

 .

What’s an Eigenvalue?

It is a scale factor. An eigenvalue is also called a proper value or a hidden
value. Symbols λ1, λ2, λ3 used in Fourier’s model are eigenvalues.

Historically, the German term eigenwert was used exclusively in litera-
ture, because German was the preferred publication language for physics.
Due to literature migration into English language journals, a hybrid term
eigenvalue evolved, the German word wert replaced by value

A Key Example. Let x in R3 be a data set variable with coordi-
nates x1, x2, x3 recorded respectively in units of meters, millimeters and
centimeters. We consider the problem of conversion of the mixed-unit
x-data into proper MKS units (meters-kilogram-second) y-data via the
equations

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

(2)
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Equations (2) are a model for changing units. Scaling factors λ1 = 1,
λ2 = 0.001, λ3 = 0.01 are the eigenvalues of the model. To summarize:

The eigenvalues of a model are scale factors. They are
normally represented by symbols λ1, λ2, λ3, . . . .

The data conversion problem (2) can be represented as y = Ax, where
the diagonal matrix A is given by

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 , λ1 = 1, λ2 =
1

1000
, λ3 =

1
100

.

What’s an Eigenvector?

Symbols v1, v2, v3 in Fourier’s model are called eigenvectors, or proper
vectors or hidden vectors. They are assumed independent.

The eigenvectors v1, v2, v3 of model (2) are three independent direc-
tions of application for the respective scale factors λ1 = 1, λ2 = 0.001,
λ3 = 0.01. The directions identify the components of the data set, to
which the individual scale factors are to be multiplied, to perform the
data conversion. Because the scale factors apply individually to the x1,
x2 and x3 components of a vector x, then

v1 =

 1
0
0

 , v2 =

 0
1
0

 , v3 =

 0
0
1

 .(3)

The data is represented as x = x1v1 +x2v2 +x3v3. The answer y = Ax
is given by the equation

y =

 λ1x1

0
0

 +

 0
λ2x2

0

 +

 0
0

λ3x3



= λ1x1

 1
0
0

 + λ2x2

 0
1
0

 + λ3x3

 0
0
1


= x1λ1v1 + x2λ2v2 + x3λ3v3.

In summary:

The eigenvectors of a model are independent directions
of application for the scale factors (eigenvalues).
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History of Fourier’s Model. The subject of eigenanalysis was
popularized by J. B. Fourier in his 1822 publication on the theory of
heat, Théorie analytique de la chaleur. His ideas can be summarized as
follows for the n× n matrix equation y = Ax.

The vector y = Ax is obtained from eigenvalues λ1, λ2,
. . . , λn and eigenvectors v1, v2, . . . , vn by replacing the
eigenvectors by their scaled versions λ1v1, λ2v2, . . . , λnvn:

x = c1v1 + c2v2 + · · · + cnvn implies
y = x1λ1v1 + x2λ2v2 + · · · + cnλnvn.

Determining Equations. The eigenvalues and eigenvectors are de-
termined by homogeneous matrix–vector equations. In Fourier’s model

A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3

choose c1 = 1, c2 = c3 = 0. The equation reduces to Av1 = λ1v1.
Similarly, taking c1 = c2 = 0, c2 = 1 implies Av2 = λ2v2. Finally,
taking c1 = c2 = 0, c3 = 1 implies Av3 = λ3v3. This proves:

Theorem 1 (Determining Equations in Fourier’s Model)
Assume Fourier’s model holds. Then the eigenvalues and eigenvectors are
determined by the three equations

Av1 = λ1v1,
Av2 = λ2v2,
Av3 = λ3v3.

The three relations of the theorem can be distilled into one homogeneous
matrix–vector equation

Av = λv.

Write it as Ax−λx = 0, then replace λx by λIx to obtain the standard
form1

(A− λI)v = 0, v 6= 0.

Let B = A− λI. The equation Bv = 0 has a nonzero solution v if and
only if there are infinitely many solutions. Because the matrix is square,
infinitely many solutions occurs if and only if rref(B) has a row of zeros.
Determinant theory gives a more concise statement: det(B) = 0 if and
only if Bv = 0 has infinitely many solutions. This proves:

Theorem 2 (Characteristic Equation)
If Fourier’s model holds, then the eigenvalues λ1, λ2, λ3 are roots λ of the
polynomial equation

det(A− λI) = 0.
1Identity I is required to factor out the matrix A − λI. It is wrong to factor out

A− λ, because A is 3× 3 and λ is 1× 1, incompatible sizes for matrix addition.
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The equation is called the characteristic equation. The character-
istic polynomial is the polynomial on the left, normally obtained by
cofactor expansion or the triangular rule.

An Illustration.

det

((
1 3
1 2

)
− λ

(
1 0
0 1

))
=

∣∣∣∣∣ 1− λ 3
1 2− λ

∣∣∣∣∣
= (1− λ)(2− λ)− 6
= λ2 − 3λ− 4
= (λ+ 1)(λ− 4).

The characteristic equation λ2 − 3λ− 4 = 0 has roots λ1 = −1, λ2 = 4.
The characteristic polynomial is λ2 − 3λ− 4.

Theorem 3 (Finding Eigenvectors of A)
For each root λ of the characteristic equation, write the frame sequence for
B = A − λI with last frame rref(B), followed by solving for the general
solution v of the homogeneous equation Bv = 0. Solution v uses invented
parameter names t1, t2, . . . . The vector basis answers ∂t1v, ∂t2v, . . . are
independent eigenvectors of A paired to eigenvalue λ.

Proof: The equation Av = λv is equivalent to Bv = 0. Because det(B) = 0,
then this system has infinitely many solutions, which implies the frame sequence
starting at B ends with rref(B) having at least one row of zeros. The general
solution then has one or more free variables which are assigned invented symbols
t1, t2, . . . , and then the vector basis is obtained by from the corresponding
list of partial derivatives. Each basis element is a nonzero solution of Av =
λv. By construction, the basis elements (eigenvectors for λ) are collectively
independent. The proof is complete.

The theorem implies that a 3 × 3 matrix A with eigenvalues 1, 2, 3
causes three frame sequences to be computed, each sequence producing
one eigenvector. In contrast, if A has eigenvalues 1, 1, 1, then only one
frame sequence is computed.

Definition 1 (Eigenpair)
An eigenpair is an eigenvalue λ together with a matching eigenvector
v 6= 0 satisfying the equation Av = λv. The pairing implies that scale
factor λ is applied to direction v.

A 3×3 matrix A for which Fourier’s model holds has eigenvalues λ1, λ2,
λ3 and corresponding eigenvectors v1, v2, v3. The eigenpairs of A are

(λ1,v1) , (λ2,v2) , (λ3,v3) .

Theorem 4 (Independence of Eigenvectors)
If (λ1,v1) and (λ2,v2) are two eigenpairs of A and λ1 6= λ2, then v1, v2

are independent.
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More generally, if (λ1,v1), . . . , (λk,vk) are eigenpairs of A corresponding
to distinct eigenvalues λ!, . . . , λk, then v1, . . . , vk are independent.

Proof: Let’s solve c1v1 + c2v2 = 0 for c1, c2. Apply A to this equation, then
c1λ1v1 + c2λ2v2 = 0. Multiply the first equation by λ2 and subtract from the
second equation to get c1(λ1 − λ2)v1 = 0. Because λ1 6= λ2, cancellation gives
c1v1 = 0. The assumption v1 6= 0 implies c1 = 0. Similarly, c2 = 0. This
proves v1, v2 are independent.

The general case is proved by induction on k. The case k = 1 follows because a
nonzero vector is an independent set. Assume it holds for k− 1 and let’s prove
it for k, when k > 1. We solve

c1v1 + · · ·+ ckvk = 0

for c1, . . . , ck. Apply A to this equation, which effectively replaces each ci by
λici. Then multiply the first equation by λ1 and subtract the two equations to
get

c2(λ1 − λ2)v1 + · · ·+ ck(λ1 − λk)vk = 0.

By the induction hypothesis, all coefficients are zero. Because λ1 − λi 6= 0
for i > 1, then c2 through ck are zero. Return to the first equation to obtain
c1v1 = 0. Because v1 6= 0, then c1 = 0. This finishes the induction.

Definition 2 (Diagonalizable Matrix)
A square matrix A for which Fourier’s model holds is called diagonaliz-
able. The n×nmatrix A has n eigenpairs with independent eigenvectors.

Eigenanalysis Facts.

1. An eigenvalue λ of a triangular matrix A is one of the diagonal
entries. If A is non-triangular, then an eigenvalue is found as a
root λ of det(A− λI) = 0.

2. An eigenvalue of A can be zero, positive, negative or even complex.
It is a pure number, with a physical meaning inherited from the
model, e.g., a scale factor.

3. An eigenvector for eigenvalue λ (a scale factor) is a nonzero di-
rection v of application satisfying Av = λv. It is found from a
frame sequence starting at B = A − λI and ending at rref(B).
Independent eigenvectors are computed from the general solution
as partial derivatives ∂/∂t1, ∂/∂t2, . . . .

4. If a 3 × 3 matrix has three independent eigenvectors, then they
collectively form in R3 a basis or coordinate system.
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Eigenpair Packages

The eigenpairs of a 3 × 3 matrix for which Fourier’s model holds are
labeled

(λ1,v1), (λ2,v2), (λ3,v3).

An eigenvector package is a matrix package P of eigenvectors v1, v2,
v3 given by

P = aug(v1,v2,v3).

An eigenvalue package is a matrix package D of eigenvalues given by

D = diag(λ1, λ2, λ3).

Important is the pairing that is inherited from the eigenpairs, which dic-
tates the packaging order of the eigenvectors and eigenvalues. Matrices
P, D are not unique: possible are 3! (= 6) column permutations.

An Example. The eigenvalues for the data conversion problem (2)
are λ1 = 1, λ2 = 0.001, λ3 = 0.01 and the eigenvectors v1, v2, v3 are
the columns of the identity matrix I, given by (3). Then the eigenpair
packages are

D =

 1 0 0
0 0.001 0
0 0 0.01

 , P =

 1 0 0
0 1 0
0 0 1

 .
Theorem 5 (Eigenpair Packages)
Let P be a matrix package of eigenvectors and D the corresponding matrix
package of eigenvalues. Then for all vectors c,

APc = PDc.

Proof: The result is valid for n × n matrices. We prove it for 3 × 3 matrices.
The two sides of the equation are expanded as follows.

PDc = P

 λ1 0 0
0 λ2 0
0 0 λ3

 c1
c2
c3

 Expand RHS.

= P

 λ1c1
λ2c2
λ3c3


= λ1c1v1 + λ2c2v2 + λ3c3v3 Because P has columns v1, v2, v3.

APc = A(c1v2 + c2v2 + c3v3) Expand LHS.

= c1λ1v1 + c2λ2v2 + c3λ3v3 Fourier’s model.
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The Equation AP = PD

The question of Fourier’s model holding for a given 3 × 3 matrix A is
settled here. According to the result, a matrix A for which Fourier’s
model holds can be constructed by the formula A = PDP−1 where D is
any diagonal matrix and P is an invertible matrix.

Theorem 6 (AP = PD)
Fourier’s model A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3 holds
for eigenpairs (λ1,v1), (λ2,v2), (λ3,v3) if and only if the packages

P = aug(v1,v2,v3), D = diag(λ1, λ2, λ3)

satisfy the two requirements

1. Matrix P is invertible, e.g., det(P) 6= 0.

2. Matrix A = PDP−1, or equivalently, AP = PD.

Proof: Assume Fourier’s model holds. Define P = P and D = D, the eigenpair
packages. Then 1 holds, because the columns of P are independent. By Theo-
rem 5, APc = PDc for all vectors c. Taking c equal to a column of the identity
matrix I implies the columns of AP and PD are identical, that is, AP = PD.
A multiplication of AP = PD by P−1 gives 2.

Conversely, let P and D be given packages satisfying 1, 2. Define v1, v2, v3

to be the columns of P . Then the columns pass the rank test, because P is
invertible, proving independence of the columns. Define λ1, λ2, λ3 to be the
diagonal elements of D. Using AP = PD, we calculate the two sides of APc =
PDc as in the proof of Theorem 5, which shows that x = c1v1 + c2v2 + c2v3

implies Ax = c1λ1v1 + c2λ2v2 + c3λ3v3. Hence Fourier’s model holds.

The Matrix Eigenanalysis Method

The preceding discussion of data conversion now gives way to abstract
definitions which distill the essential theory of eigenanalysis. All of this
is algebra, devoid of motivation or application.

Definition 3 (Eigenpair)
A pair (λ,v), where v 6= 0 is a vector and λ is a complex number, is
called an eigenpair of the n× n matrix A provided

Av = λv (v 6= 0 required).(4)

The nonzero requirement in (4) results from seeking directions for a
coordinate system: the zero vector is not a direction. Any vector v 6= 0
that satisfies (4) is called an eigenvector for λ and the value λ is called
an eigenvalue of the square matrix A. The algorithm:
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Theorem 7 (Algebraic Eigenanalysis)
Eigenpairs (λ,v) of an n×n matrix A are found by this two-step algorithm:

Step 1 (College Algebra). Solve for eigenvalues λ in the nth
order polynomial equation det(A− λI) = 0.

Step 2 (Linear Algebra). For a given root λ from Step 1, a
corresponding eigenvector v 6= 0 is found by applying the rref
method2 to the homogeneous linear equation

(A− λI)v = 0.

The reported answer for v is routinely the list of partial deriva-
tives ∂t1v, ∂t2v, . . . , where t1, t2, . . . are invented symbols
assigned to the free variables.

The reader is asked to apply the algorithm to the identity matrix I; then
Step 1 gives n duplicate answers λ = 1 and Step 2 gives n answers, the
columns of the identity matrix I.
Proof: The equation Av = λv is equivalent to (A − λI)v = 0, which is a set
of homogeneous equations, consistent always because of the solution v = 0.

Fix λ and define B = A − λI. We show that an eigenpair (λ,v) exists with
v 6= 0 if and only if det(B) = 0, i.e., det(A−λI) = 0. There is a unique solution
v to the homogeneous equation Bv = 0 exactly when Cramer’s rule applies,
in which case v = 0 is the unique solution. All that Cramer’s rule requires is
det(B) 6= 0. Therefore, an eigenpair exists exactly when Cramer’s rule fails to
apply, which is when the determinant of coefficients is zero: det(B) = 0.

Eigenvectors for λ are found from the general solution to the system of equations
Bv = 0 where B = A−λI. The rref method produces systematically a reduced
echelon system from which the general solution v is written, depending on
invented symbols t1, . . . , tk. Since there is never a unique solution, at least one
free variable exists. In particular, the last frame rref(B) of the sequence has a
row of zeros, which is a useful sanity test.

The basis of eigenvectors for λ is obtained from the general solution v,
which is a linear combination involving the parameters t1, . . . , tk. The basis
elements are reported as the list of partial derivatives ∂t1v, . . . , ∂tkv.

Diagonalization

A square matrixA is called diagonalizable providedAP = PD for some
diagonal matrix D and invertible matrix P . The preceding discussions
imply that D must be a package of eigenvalues of A and P must be
the corresponding package of eigenvectors of A. The requirement on P

2For Bv = 0, the frame sequence begins with B, instead of aug(B,0). The
sequence ends with rref(B). Then the reduced echelon system is written, followed by
assignment of free variables and display of the general solution v.
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to be invertible is equivalent to asking that the eigenvectors of A be
independent and equal in number to the column dimension of A.

The matrices A for which Fourier’s model is valid is precisely the class of
diagonalizable matrices. This class is not the set of all square matrices:
there are matrices A for which Fourier’s model is invalid. They are called
non-diagonalizable matrices.

Theorem 4 implies that the construction for eigenvector package P al-
ways produces independent columns. Even if A has fewer than n eigen-
pairs, the construction still produces independent eigenvectors. In such
non-diagonalizable cases, caused by insufficient columns to form P ,
matrix A must have an eigenvalue of multiplicity greater than one.

If all eigenvalues are distinct, then the correct number of independent
eigenvectors were found and A is then diagonalizable with packages D,
P satisfying AP = PD. This proves the following result.

Theorem 8 (Distinct Eigenvalues)
If an n×n matrix A has n distinct eigenvalues, then it has n eigenpairs and
A is diagonalizable with eigenpair packages D, P satisfying AP = PD.

Examples

1 Example (Computing 2× 2 Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 0
2 −1

)
.

Solution:
College Algebra. The eigenvalues are λ1 = 1, λ2 = −1. Details:

0 = det(A− λI) Characteristic equation.

=
∣∣∣∣ 1− λ 0

2 −1− λ

∣∣∣∣ Subtract λ from the diag-
onal.

= (1− λ)(−1− λ) Sarrus’ rule.

Linear Algebra. The eigenpairs are
(

1,
(

1
1

))
,
(
−1,

(
0
1

))
. Details:

Eigenvector for λ1 = 1.

A− λ1I =
(

1− λ1 0
2 −1− λ1

)
=
(

0 0
2 −2

)
≈
(

1 −1
0 0

)
Swap and multiply rules.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = t1, y = t1 is eigenvector

v1 =
(

1
1

)
.

Eigenvector for λ2 = −1.

A− λ2I =
(

1− λ2 0
2 −1− λ2

)
=
(

2 0
2 0

)
≈
(

1 0
0 0

)
Combination and multiply.

= rref(A− λ2I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = t1 is eigenvector

v2 =
(

0
1

)
.

2 Example (Computing 2× 2 Complex Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 2
−2 1

)
.

Solution:
College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i. Details:

0 = det(A− λI) Characteristic equation.

=
∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ Subtract λ from the diagonal.

= (1− λ)2 + 4 Sarrus’ rule.

The roots λ = 1 ± 2i are found from the quadratic formula after expanding
(1− λ)2 + 4 = 0. Alternatively, use (1− λ)2 = −4 and take square roots.

Linear Algebra. The eigenpairs are
(

1 + 2i,
(
−i

1

))
,
(

1− 2i,
(

i
1

))
.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =
(

1− λ1 2
−2 1− λ1

)
=
(
−2i 2
−2 −2i

)
≈
(

i −1
1 i

)
Multiply rule.

≈
(

0 0
1 i

)
Combination rule, multiplier=−i.

≈
(

1 i
0 0

)
Swap rule.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = −it1, y = t1 is eigenvector

v1 =
(
−i

1

)
.

Eigenvector for λ2 = 1− 2i.
The problem (A − λ2I)v = 0 has solution v = v1, because taking conjugates

across the equation gives (A−λ2I)v = 0; then λ1 = λ2 gives v = v1 =
(

i
1

)
.

3 Example (Computing 3× 3 Eigenpairs)

Find all eigenpairs of the 3× 3 matrix A =

 1 2 0
−2 1 0

0 0 3

.

Solution:
College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1 − 2i, λ3 = 3.
Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣
1− λ 2 0
−2 1− λ 0
0 0 3− λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1− λ)2 + 4)(3− λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1 ± 2i are
found from the quadratic formula after expanding (1−λ)2+4 = 0. Alternatively,
take roots across (λ− 1)2 = −4.

Linear Algebra.

The eigenpairs are

1 + 2i,

 −i1
0

,

1− 2i,

 i
1
0

,

3,

 0
0
1

.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

 1− λ1 2 0
−2 1− λ1 0
0 0 3− λ1


=

 −2i 2 0
−2 −2i 0

0 0 2− 2i


≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination rule, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = −it1, y = t1, z = 0 is

eigenvector v1 =

 −i1
0

.

Eigenvector for λ2 = 1− 2i.

The problem (A−λ2I)v2 = 0 has solution v2 = v1. To see why, take conjugates
across the equation to give (A−λ2I)v2 = 0. Then A = A (A is real) and λ1 = λ2

gives (A− λ1I)v2 = 0. Then v2 = v1. Finally, v2 = v2 = v1 =

 i
1
0

.

Eigenvector for λ3 = 3.

A− λ3I =

 1− λ3 2 0
−2 1− λ3 0
0 0 3− λ3


=

 −2 2 0
−2 −2 0

0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A− λ3I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = 0, z = t1 is

eigenvector v3 =

 0
0
1

.

4 Example (Decomposition A = PDP−1)
Decompose A = PDP−1 where P , D are eigenvector and eigenvalue pack-
ages, respectively, for the 3× 3 matrix

A =

 1 2 0
−2 1 0

0 0 3

 .
Write explicitly Fourier’s model in vector-matrix notation.

Solution: By the preceding example, the eigenpairs are1 + 2i,

 −i1
0

 ,

1− 2i,

 i
1
0

 ,

3,

 0
0
1

 .
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The packages are therefore

D = diag(1 + 2i, 1− 2i, 3), P =

 −i i 0
1 1 0
0 0 1

 .

Fourier’s model. The action of A in the model

A (c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3

is to replace the basis v1, v2, v3 by scaled vectors λ1v1, λ2v2, λ3v3. In vector
form, the model is

APc = PDc, c =

 c1
c2
c3

 .

Then the action of A is to replace eigenvector package P by the re-scaled package
PD. Explicitly,

x = c1

 −i1
0

+ c2

 i
1
0

+ c3

 0
0
1

 implies

Ax = c1(1 + 2i)

 −i1
0

+ c2(1− 2i)

 i
1
0

+ c3(3)

 0
0
1

 .

5 Example (Diagonalization I)
Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0

0 0 3 1
0 0 0 3

 .
If A is diagonalizable, then assemble and report eigenvalue and eigenvector
packages D, P .

Solution: The matrix A is non-diagonalizable, because it fails to have 4
eigenpairs. The details:

Eigenvalues.

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣∣∣
1− λ 2 0 0
−2 1− λ 0 0
0 0 3− λ 1
0 0 0 3− λ

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ (3− λ)2 Cofactor expansion applied twice.

=
(
(1− λ)2 + 4

)
(3− λ)2 Sarrus’ rule.
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The roots are 1± 2i, 3, 3, listed according to multiplicity.

Eigenpairs. They are1 + 2i,


−i

1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 .

Because only three eigenpairs exist, instead of four, then the matrix A is non-
diagonalizable. Details:

Eigenvector for λ1 = 1 + 2i.

A− λ1I =


1− λ1 2 0 0
−2 1− λ1 0 0
0 0 3− λ1 1
0 0 0 3− λ1



=


−2i 2 0 0
−2 −2i 0 0
0 0 2− 2i 1
0 0 0 2− 2i



≈


−i 1 0 0
−1 −i 0 0
0 0 2− 2i 1
0 0 0 1

 Multiply rule, three times.

≈


−i 1 0 0
−1 −i 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

≈


1 i 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

= rref(A− λ1I) Reduced echelon form.

The general solution is x1 = −it1, x2 = t1, x3 = 0, x4 = 0. Then ∂t1 applied
to this solution gives the reported eigenpair.

Eigenvector for λ2 = 1− 2i.
Because λ2 is the conjugate of λ1 and A is real, then an eigenpair for λ2 is
found by taking the complex conjugate of the eigenpair reported for λ1.

Eigenvector for λ3 = 3. In theory, there can be one or two eigenpairs to
report. It turns out there is only one, because of the following details.

A− λ3I =


1− λ3 2 0 0
−2 1− λ3 0 0
0 0 3− λ3 1
0 0 0 3− λ3



=


−2 2 0 0
−2 −2 0 0

0 0 0 1
0 0 0 0


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≈


1 −1 0 0
1 1 0 0
0 0 0 1
0 0 0 0

 Multiply rule, two times.

≈


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 Combination and multiply rule.

= rref(A− λ3I) Reduced echelon form.

Apply ∂t1 to the general solution x1 = 0, x2 = 0, x3 = t1, x4 = 0 to give the
eigenvector matching the eigenpair reported above.

6 Example (Diagonalization II)
Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0

0 0 3 0
0 0 0 3

 .
If A is diagonalizable, then assemble and report eigenvalue and eigenvector
packages D, P .

Solution: The matrix A is diagonalizable, because it has 4 eigenpairs1 + 2i,


−i

1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 ,

3,


0
0
0
1


 .

Then the eigenpair packages are given by

D =


−1 + 2i 0 0 0

0 1− 2i 0 0
0 0 3 0
0 0 0 3

 , P =


−i i 0 0

1 1 0 0
0 0 1 0
0 0 0 1

 .

The details parallel the previous example, except for the calculation of eigen-
vectors for λ3 = 3. In this case, the reduced echelon form has two rows of zeros
and parameters t1, t2 appear in the general solution. The answers given above
for eigenvectors correspond to the partial derivatives ∂t1 , ∂t2 .

7 Example (Non-diagonalizable Matrices)
Verify that the matrices

(
0 1
0 0

)
,

 0 0 1
0 0 0
0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


are all non-diagonalizable.
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Solution: Let A denote any one of these matrices and let n be its dimension.

First, we will decide on diagonalization, without computing eigenpairs. Assume,
in order to reach a contradiction, that eigenpair packages D, P exist with D
diagonal and P invertible such that AP = PD. Because A is triangular, its
eigenvalues appear already on the diagonal of A. Only 0 is an eigenvalue and
its multiplicity is n. Then the package D of eigenvalues is the zero matrix and
an equation AP = PD reduces to AP = 0. Multiply AP = 0 by P−1 to obtain
A = 0. But A is not the zero matrix, a contradiction. We conclude that A is
not diagonalizable.

Second, we attack the diagonalization question directly, by solving for the eigen-
vectors corresponding to λ = 0. The frame sequence has first frame B = A−λI,
but B equals rref(B) and no computations are required. The resulting reduced
echelon system is just x1 = 0, giving n− 1 free variables. Therefore, the eigen-
vectors of A corresponding to λ = 0 are the last n− 1 columns of the identity
matrix I. Because A does not have n independent eigenvectors, then A is not
diagonalizable.

Similar examples of non-diagonalizable matrices A can be constructed with A
having from 1 up to n − 1 independent eigenvectors. The examples with ones
on the super-diagonal and zeros elsewhere have exactly one eigenvector.

8 Example (Fourier’s 1822 Heat Model)
Fourier’s 1822 treatise Théorie analytique de la chaleur studied dissipation
of heat from a laterally insulated welding rod with ends held at 0◦C. Assume
the initial heat distribution along the rod at time t = 0 is given as a linear
combination

f = c1v1 + c2v2 + c3v3.

Symbols v1, v2, v3 are in the vector space V of all twice continuously
differentiable functions on 0 ≤ x ≤ 1, given explicitly as

v1 = sinπx, v2 = sin 2πx, v3 = sin 3πx.

Fourier’s heat model re-scales3 each of these vectors to obtain the tem-
perature u(t, x) at position x along the rod and time t > 0 as the model
equation

u(t, x) = c1e
−π2tv1 + c2e

−4π2tv2 + c3e
−9π2tv3.

Verify that u(t, x) solves Fourier’s partial differential equation heat model

∂u

∂t
=

∂2u

∂x2
,

u(0, x) = f(x), 0 ≤ x ≤ 1,
u(t, 0) = 0, zero Celsius at rod’s left end,
u(t, 1) = 0, zero Celsius at rod’s right end.

3The scale factors are not constants nor are they eigenvalues, but rather, they are
exponential functions of t, as was the case for matrix differential equations x′ = Ax
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Solution: First, we prove that the partial differential equation is satisfied by
Fourier’s solution u(t, x). This is done by expanding the left side (LHS) and
right side (RHS) of the differential equation, separately, then comparing the
answers for equality.

Trigonometric functions v1, v2, v3 are solutions of three different linear ordinary
differential equations: u′′+ π2u = 0, u′′+ 4π2u = 0, u′′+ 9π2u = 0. Because of
these differential equations, we can compute directly

∂2u

∂x2
= −π2c1e

−π2tv1 − 4π2c2e
−4π2tv2 − 9π2c3e

−9π2tv3.

Similarly, computing ∂tu(t, x) involves just the differentiation of exponential
functions, giving

∂u

∂t
= −π2c1e

−π2tv1 − 4π2c2e
−4π2tv2 − 9π2c3e

−9π2tv3.

Because the second display is exactly the first, then LHS = RHS, proving that
the partial differential equation is satisfied.

The relation u(0, x) = f(x) is proved by observing that each exponential factor
becomes e0 = 1 when t = 0.

The two relations u(t, 0) = u(t, 1) = 0 hold because each of v1, v2, v3 vanish
at x = 0 and x = 1. The verification is complete.

Exercises 9.1

Eigenanalysis. Classify as true or
false. If false, then correct the text to
make it true.

1. The purpose of eigenanalysis is to
find a coordinate system.

2. Diagonal matrices have all their
eigenvalues on the last row.

3. Eigenvalues are scale factors.

4. Eigenvalues of a diagonal matrix
cannot be zero.

5. Eigenvectors v of a diagonal ma-
trix can be zero.

6. Eigenpairs (λ,v) of a diagonal
matrix A satisfy the equation
Av = λv.

Eigenpairs of a Diagonal Matrix.
Find the eigenpairs of A.

7.
(

2 0
0 3

)

8.
(

1 0
0 4

)

9.

 2 0 0
0 3 0
0 0 1



10.

 0 2 0
0 1 0
0 0 1



11.

 7 0 0
0 2 0
0 0 −6



12.

 2 0 0
0 −4 0
0 0 −1


Fourier’s Model.

13.

Eigenanalysis Facts.

14.
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Eigenpair Packages.

15.

The Equation AP = PD.

16.

Matrix Eigenanalysis Method.

17.

Basis of Eigenvectors.

18.

Independence of Eigenvectors.

19.

Diagonalization Theory.

20.

Non-diagonalizable Matrices.

21.

Distinct Eigenvalues.

22.
(

2 6
5 3

)
23.

(
1 2
2 4

)

24.

 2 6 2
9 3 9
1 3 1


25.

 0 2 0
0 1 0
3 0 3



26.

 7 12 6
2 2 2
−7 −12 −6


27.

 2 2 −6
−3 −4 3
−3 −4 −1


Computing 2× 2 Eigenpairs.

28.

Computing 2 × 2 Complex Eigen-
pairs.

29.

Computing 3× 3 Eigenpairs.

30.

Decomposition A = PDP−1.

31.

Diagonalization I

32.

Diagonalization II

33.

Non-diagonalizable Matrices

34.

Fourier’s Heat Model

35.


