Basis, Dimension, Kernel, Image

- Definitions: Pivot, Basis, Rank and Nullity
- Main Results: Dimension, Pivot Theorem
- Main Results: Rank-Nullity, Row Rank, Pivot Method
- Definitions: Kernel, Image, rowspace, colspace
- How to Compute: Nullspace, Rowspace, Colspace
- Dimension, Kernel and Image
- Testing Bases for Equivalence
- Equivalent Bases: Computer Illustration
- A False Test for Equivalent Bases

Definitions: Pivot and Basis

- Pivot of A A column in rref(A) which contains a leading one has a corresponding column in A, called a pivot column of A.
- Basis of V It is an independent set v_1, \ldots, v_k from data set V whose linear combinations generate all data items in V.

Definitions: Rank and Nullity

rank(A)The number of leading ones in rref(A)nullity(A)The number of columns of A minus rank(A)

Main Results: Dimension, Pivot Theorem

Theorem 1 (Dimension)

If a vector space V has a basis v_1, \ldots, v_p and also a basis u_1, \ldots, u_q , then p = q. The **dimension** of V is this unique number p.

Theorem 2 (The Pivot Theorem)

- The pivot columns of a matrix A are linearly independent.
- A non-pivot column of A is a linear combination of the pivot columns of A.

The proofs can be found in web documents and also in the textbook by E & P. Selfcontained proofs of the statements of the pivot theorem appear in these slides. **Lemma 1** Let B be invertible and v_1, \ldots, v_p independent. Then Bv_1, \ldots, Bv_p are independent.

Proof of Independence of the Pivot Columns

Consider the fundamental frame sequence identity $\operatorname{rref}(A) = EA$ where $E = E_k \cdots E_2 E_1$ is a product of elementary matrices. Let $B = E^{-1}$. Then

$$\operatorname{col}(\operatorname{rref}(A),j) = E \operatorname{col}(A,j)$$

implies that a pivot column j of A satisfies

$$\operatorname{col}(A,j) = B \operatorname{col}(I,j).$$

Because the columns of I are independent, then also the pivot columns of A are independent, by the Lemma.

Proof of Non-Pivot Column Dependence

A non-pivot column j of A corresponds to a free variable x_j . Assign $x_j = -1$ and all other free variables zero. Then all lead variables are uniquely determined in the general solution of Ax = 0. The vector x so defined is a solution of Ax = 0. The equation Ax = 0 can be written as a linear combination of the columns of A:

$$\sum_{k=1}^n x_k \operatorname{col}(A,k) = 0.$$

Move the term $x_j \operatorname{col}(A, j)$ across the equal sign, use $x_j = -1$, and then swap sides to obtain the equality

$$\operatorname{col}(A,j) = \sum_{k
eq j} x_k \operatorname{col}(A,k).$$

The right side of this relation contains zero terms for all non-pivot columns. Therefore, the right side is a linear combination of the pivot columns of A, which implies the result.

Main Results: Rank-Nullity, Row Rank, Pivot Method

```
Theorem 3 (Rank-Nullity Equation)
rank(A) + nullity(A) = column dimension of A
```

Theorem 4 (Row Rank Equals Column Rank)

The number of independent rows of a matrix A equals the number of independent columns of A. Equivalently, $rank(A) = rank(A^T)$.

Theorem 5 (Pivot Method)

Let A be the augmented matrix of v_1, \ldots, v_k . Let the leading ones in rref(A) occur in columns i_1, \ldots, i_p . Then a largest independent subset of the k vectors v_1, \ldots, v_k is the set

 $\mathbf{v}_{i_1}, \mathbf{v}_{i_2}, \ldots, \mathbf{v}_{i_p}$.

Proof that $rank(A) = rank(A^T)$

Let S denote the set of all linear combinations of the rows of A. Then S is a subspace, known as the row space of A. A frame sequence from A to rref(A) consists of combination, swap and multiply operations on the rows of A. Therefore, each nonzero row of rref(A) is a linear combination of the rows of A. Because these rows are independent and span S, then they are a basis for S. The size of the basis is rank(A).

The pivot theorem applied to A^T implies that each vector in S is a linear combination of the pivot columns of A^T . Because the pivot columns of A^T are independent and span S, then they are a basis for S. The size of the basis is $rank(A^T)$.

The two competing bases for S have sizes rank(A) and $rank(A^T)$, respectively. But the size of a basis is unique, called the dimension of the subspace S, hence the equality

 $\operatorname{rank}(A) = \operatorname{rank}(A^T).$

Definitions: Kernel, Image, rowspace, colspace _______ kernel(A) = nullspace(A) = {x : Ax = 0}. Image(A) = colspace(A) = {y : y = Ax for some x}. rowspace(A) = colspace(A^T) = {w : w = A^Ty for some y}.

How to Compute Nullspace, Rowspace and Colspace

- Null Space. Compute $\operatorname{rref}(A)$. Write out the general solution x to Ax = 0, where the free variables are assigned parameter names t_1, \ldots, t_k . Report the basis for $\operatorname{nullspace}(A)$ as the list $\partial_{t_1} x, \ldots, \partial_{t_k} x$.
- **Column Space.** Compute $\operatorname{rref}(A)$. Identify the pivot columns i_1, \ldots, i_k . Report the basis for $\operatorname{colspace}(A)$ as the list of columns i_1, \ldots, i_k of A.
- **Row Space.** Compute $\operatorname{rref}(A^T)$. Identify the pivot columns j_1, \ldots, j_ℓ of A^T . Report the basis for $\operatorname{rowspace}(A)$ as the list of rows j_1, \ldots, j_ℓ of A.

Alternatively, compute $\operatorname{rref}(A)$, then $\operatorname{rowspace}(A)$ has a *different* basis consisting of the list of nonzero rows of $\operatorname{rref}(A)$.

Dimension, Kernel and Image

Symbol $\dim(V)$ equals the number of elements in a basis for V.

Theorem 6 (Dimension Identities) (a) $\dim(\operatorname{nullspace}(A)) = \dim(\operatorname{kernel}(A)) = \operatorname{nullity}(A)$ (b) $\dim(\operatorname{colspace}(A)) = \dim(\operatorname{Image}(A)) = \operatorname{rank}(A)$ (c) $\dim(\operatorname{rowspace}(A)) = \operatorname{rank}(A)$ (d) $\dim(\operatorname{kernel}(A)) + \dim(\operatorname{Image}(A)) = \operatorname{column} \operatorname{dimension} \operatorname{of} A$ (e) $\dim(\operatorname{kernel}(A)) + \dim(\operatorname{kernel}(A^T)) = \operatorname{column} \operatorname{dimension} \operatorname{of} A$

Testing Bases for Equivalence

Theorem 7 (Equivalence Test for Bases) Define augmented matrices

 $B = \mathrm{aug}(\mathrm{v}_1,\ldots,\mathrm{v}_k), \hspace{0.3cm} C = \mathrm{aug}(\mathrm{u}_1,\ldots,\mathrm{u}_\ell), \hspace{0.3cm} W = \mathrm{aug}(B,C).$

Then relation $k = \ell = \operatorname{rank}(B) = \operatorname{rank}(C) = \operatorname{rank}(W)$ implies

1. $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is an independent set.

- **2**. $\mathbf{u}_1, \ldots, \mathbf{u}_\ell$ is an independent set.
- **3**. span $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ = span $\{\mathbf{u}_1,\ldots,\mathbf{u}_\ell\}$

In particular, colspace(B) = colspace(C) and each set of vectors is an equivalent basis for this vector space.

Proof: Because $\operatorname{rank}(B) = k$, then the first k columns of W are independent. If some column of C is independent of the columns of B, then W would have k + 1 independent columns, which violates $k = \operatorname{rank}(W)$. Therefore, the columns of C are linear combinations of the columns of B. Then vector space $\operatorname{colspace}(C)$ is a subspace of vector space $\operatorname{colspace}(B)$. Because both vector spaces have dimension k, then $\operatorname{colspace}(B) = \operatorname{colspace}(C)$. The proof is complete.

Equivalent Bases: Computer Illustration

The following maple code applies the theorem to verify that two bases are equivalent:

- 1. The basis is determined from the colspace command in maple.
- **2**. The basis is determined from the pivot columns of A.

In maple, the report of the column space basis is identical to the nonzero rows of $\operatorname{rref}(A^T)$.

A False Test for Equivalent Bases The relation

$$\operatorname{rref}(B) = \operatorname{rref}(C)$$

holds for a substantial number of matrices B and C. However, it does not imply that each column of C is a linear combination of the columns of B. For example, define

$$B = egin{pmatrix} 1 & 0 \ 0 & 1 \ 1 & 1 \end{pmatrix}, \quad C = egin{pmatrix} 1 & 1 \ 0 & 1 \ 1 & 0 \end{pmatrix}.$$

Then

$$\operatorname{rref}(B) = \operatorname{rref}(C) = egin{pmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{pmatrix},$$

but col(C, 2) is not a linear combination of the columns of B. This means $colspace(B) \neq colspace(C)$.

Geometrically, the column spaces are planes in \mathbb{R}^3 which intersect only along the line L through the two points (0, 0, 0) and (1, 0, 1).