Solution Set Basis for Linear Differential Equations

- Nth Order Linear Differential Equation
- Atoms
- Examples of Atoms
- Theorems about Atoms
- Atoms are independent
- Euler's Theorem
- Basis of the solution set
- How to use Euler's Theorem
- Examples

Linear Differential Equations

The solution set of a homogeneous constant coefficient linear differential equation

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

is known to be a vector space of functions of dimension \boldsymbol{n}, consisting of special linear combinations

$$
\begin{equation*}
y=c_{1} f_{1}+\cdots+c_{n} f_{n} \tag{1}
\end{equation*}
$$

where f_{1}, \ldots, f_{n} are elementary functions known as atoms.

Definition of Atom

An atom is defined as the nonzero real or imaginary part of

$$
x^{n} e^{a x}(\cos b x+i \sin b x)
$$

with $\boldsymbol{a}, \boldsymbol{b}$ real, $\boldsymbol{b} \geq 0$, and $\boldsymbol{n}=0,1,2 \ldots$ an integer. An atom has coefficient 1 , and the zero function is not an atom.

Examples of Atoms

$1, x, x^{2}, e^{x}, x e^{-x}, x^{15} e^{2 x} \cos 3 x, \cos 3 x, \sin 2 x, x^{2} \cos 2 x, x^{6} \sin \pi x$, $x^{10} e^{\pi x} \sin 0.1 x$

Functions that are not Atoms

$$
x /(1+x), \ln |x|, e^{x^{2}}, \sin (x+1), 0,2 x, \sin (1 / x), \sqrt{x}
$$

Theorems about Atoms

Theorem 1 (Independence)

Any finite list of atoms is linearly independent.

Theorem 2 (Euler)

The real characteristic polynomial

$$
p(r)=r^{n}+a_{n-1} r^{n-1}+\cdots+a_{0}
$$

has a factor $(r-a-i b)^{k+1}$ if and only if

$$
y=x^{k} e^{a x}(\cos b x+i \sin b x)
$$

is a solution of (1).

Theorem 3 (Basis)

The solution set of equation (1) has a basis of \boldsymbol{n} solution atoms which are determined by Euler's theorem.

Euler's Theorem Translated

Theorem 4 (How to Apply Euler's Theorem)

Factor dividing $p(r)$	Solution Atom(s)
$(r-5)$	$e^{5 x}$
$(r+7)^{2}$	$e^{-7 x}$ and $x e^{-7 x}$
r	$e^{0 x}$
r^{2}	$e^{0 x}$ and $x e^{0 x}$
r^{3}	$1, x$ and $x^{2}\left[e^{0 x}=1\right]$
$(r-5 i)$	$\cos 5 x$ and $\sin 5 x$
$(r+3 i)^{2}$	$x \cos 3 x$ and $x \sin 3 x$
$(r-2+3 i)^{2}$	$x e^{2 x} \cos 3 x$ and $x e^{2 x} \sin 3 x$

Example 1. Solve $\boldsymbol{y}^{\prime \prime \prime}=0$.
Solution: $\boldsymbol{p}(\boldsymbol{r})=\boldsymbol{r}^{3}$ implies $1, \boldsymbol{x}, \boldsymbol{x}^{2}$ are solution atoms. They are independent, hence form a basis for the 3 -dimensional solution space.
Example 2. Solve $\boldsymbol{y}^{\prime \prime}+4 \boldsymbol{y}=0$.
Solution: $\boldsymbol{p}(\boldsymbol{r})=r^{2}+4$ implies $\cos 2 \boldsymbol{x}$ and $\sin 2 \boldsymbol{x}$ are solution atoms. They are a basis for the 2 -dimensional solution space.
Example 3. Solve $\boldsymbol{y}^{\prime \prime}+2 \boldsymbol{y}^{\prime}=0$.
Solution: $\boldsymbol{p}(r)=r^{2}+2 r$ implies $1, e^{-2 x}$ are solution atoms. These independent atoms form a basis for the 2 -dimensional solution space.
Example 4. Solve $\boldsymbol{y}^{(4)}+4 \boldsymbol{y}^{\prime \prime}=0$.
Solution: $p(r)=r^{4}+4 r^{2}=r^{2}\left(r^{2}+4\right)$ implies $1, x, \cos 2 x, \sin 2 x$ are solution atoms which form a basis for the 4 -dimensional solution space.

