Solution Set Basis for Linear Differential Equations

- Nth Order Linear Differential Equation
- Atoms
- Examples of Atoms
- Theorems about Atoms
 - Atoms are independent
 - Euler's Theorem
 - Basis of the solution set
- How to use Euler's Theorem
- Examples

Linear Differential Equations

The solution set of a homogeneous constant coefficient linear differential equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0$$

is known to be a vector space of functions of dimension n, consisting of special linear combinations

$$(1) y = c_1 f_1 + \cdots + c_n f_n,$$

where f_1, \ldots, f_n are elementary functions known as **atoms**.

Definition of Atom

An atom is defined as the nonzero real or imaginary part of

$$x^n e^{ax} (\cos bx + i \sin bx)$$

with a, b real, $b \ge 0$, and $n = 0, 1, 2 \dots$ an integer. An atom has coefficient 1, and the zero function is not an atom.

Examples of Atoms

 $1, x, x^2, e^x, xe^{-x}, x^{15}e^{2x}\cos 3x, \cos 3x, \sin 2x, x^2\cos 2x, x^6\sin \pi x, x^{10}e^{\pi x}\sin 0.1x$

Functions that are not Atoms

$$x/(1+x), \ln|x|, e^{x^2}, \sin(x+1), 0, 2x, \sin(1/x), \sqrt{x}$$

Theorems about Atoms

Theorem 1 (Independence)

Any finite list of atoms is linearly independent.

Theorem 2 (Euler)

The real characteristic polynomial

$$p(r) = r^n + a_{n-1}r^{n-1} + \cdots + a_0$$

has a factor $(r-a-ib)^{k+1}$ if and only if

$$y = x^k e^{ax} (\cos bx + i \sin bx)$$

is a solution of (1).

Theorem 3 (Basis)

The solution set of equation (1) has a basis of n solution atoms which are determined by Euler's theorem.

Euler's Theorem Translated

Theorem 4 (How to Apply Euler's Theorem)

Factor dividing $p(r)$	Solution Atom(s)
(r-5)	e^{5x}
$(r+7)^2$	e^{-7x} and xe^{-7x}
r	e^{0x}
r^2	e^{0x} and xe^{0x}
r^3	1 , x and x^2 $\left[e^{0x}=1 ight]$
(r-5i)	$\cos 5x$ and $\sin 5x$
$(r+3i)^2$	$x\cos 3x$ and $x\sin 3x$
$(r-2+3i)^2$	$xe^{2x}\cos 3x$ and $xe^{2x}\sin 3x$

Example 1. Solve y''' = 0.

Solution: $p(r) = r^3$ implies 1, x, x^2 are solution atoms. They are independent, hence form a basis for the 3-dimensional solution space.

Example 2. Solve y'' + 4y = 0.

Solution: $p(r) = r^2 + 4$ implies $\cos 2x$ and $\sin 2x$ are solution atoms. They are a basis for the 2-dimensional solution space.

Example 3. Solve y'' + 2y' = 0.

Solution: $p(r) = r^2 + 2r$ implies 1, e^{-2x} are solution atoms. These independent atoms form a basis for the 2-dimensional solution space.

Example 4. Solve $y^{(4)} + 4y'' = 0$.

Solution: $p(r) = r^4 + 4r^2 = r^2(r^2 + 4)$ implies $1, x, \cos 2x, \sin 2x$ are solution atoms which form a basis for the 4-dimensional solution space.