Laplace Table Derivations
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Proof of L(t") = n!/s't"
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The first step is to evaluate L(f(t)) for f(t) = t° [n = 0 case]. The function ¢° is
written as 1, but Laplace theory conventions require f(t) = 0 for t < 0, therefore f(t)
is technically the unit step function.

L(1) = [;7(1)e *dt Laplace integral of f(t) = 1.
—(1/5)e ;=" Evaluate the integral.
1/s Assumed s > 0 to evaluate lim;_,., e *¢.



Proof of L(t") = n!/s't"
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The value of L(f(t)) for f(t) = t can be obtained by s-differentiation of the relation
L(1) = 1/s, as follows. Technically, f(t) = 0 fort < O, then f(t) is called the

ramp function.
2L(1) = £ [ (1)e*tdt

— Ooo % (e™**) dt

= [7(—t)e*dt

= —L(t)

Then
L(t) = —4L(1)
= —4(1/s)

=1/s

Laplace integral for f(t) = 1.
Used L 7 Fdt = [ 9.

a ds

Calculus rule (e*)" = u'e™.
Definition of L(t).

Rewrite last display.
Use L(1) = 1/s.
Differentiate.



Proof of L(t") = n!/s't"
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This idea can be repeated to give

d
L(t?*) = ——L(t)

ds

= L(t%)
2
=

The pattern is L(¢") = —<L L(¢""), which implies the formula
!
L(t") = —

The proof is complete.



Proof of L(e™) =
s—a

The result follows from L(1) = 1/s, as follows.

L(e™) = [ ee *dt Direct Laplace transform.
= [T e midy Use eteB = eAtB,
= [ e idt Substitute S = s — a.
=1/S Apply L(1) = 1/s.

=1/(s — a) Back-substitute S = s — a.



Proof of L(cos bt) =

Slide 1 of 2
Use will be made of Euler’s formula

and L(sin bt) =
s2 + b2 s2 + b2

e = cos0 + isin 0,

usually first introduced in trigonometry. In this formula, @ is a real number in radians and
t = y/—1 is the complex unit.

e’'e~5t = (cos bt)e ** + i(sin bt)e Substitute & = bt into Euler’s
formula and multiply by e~**.
[ e ®e~stdt = [ (cos bt)e dt Integrate t = 0 tot = oo.
+ 3 fo"o(sin bt)e stdt Then use properties of inte-
grals.
1 o0 .
— = [ (cos bt)e *tdt Evaluate the left hand side us-
s — b 0

ing L(e*) = 1/(s — a),

. oo . —st
+ i J, (sinbt)e *'dt 0 — b,



Proof of L(cos bt) = and L(sin bt) =
s? + b? s2 + b?
Slide 2 of 2
— = L(cosbt) + 1 L(sin bt) Direct Laplace transform defi-
s —1b nition.
b
82+ - S L(cos bt) + ¢L(sin bt) Use complex rule 1/z =
8540 Z/|z2, 2 = A+ iB, z =
A —iB, |z| = VA% + B2
S
= L(cos bt) Extract the real part.
s? + b?
b
= L(sin bt) Extract the imaginary part.




Proofof L(H(t — a)) = e **/s

L(H(t—a))= [, H(t— a)e*dt Direct Laplace transform. As-
sume a > 0.
= [*(1)e *dt Because H(t — a) = 0 for
0<t<a.
= [, (1)e*CtTadg Change variables t = = + a.
= e [Z(1)e**dw Constant e~?* moves outside
integral.

= e *(1/s) Apply L(1) = 1/s.



Proof of L(6(t — a)) = e **
Slide 1 of 3
The definition of the delta function is a formal one, in which every occurrence of symbol
0(t — a)dt under an integrand is replaced by dH (t — a). The differential symbol
dH (t — a) is taken in the sense of the Riemann-Stieltjes integral. This integral is defined
in Rudin’s Real analysis for monotonic integrators cx(x) as the limit

| f@)da@) = lim 3" f@)@(e,) - al@n-)

where ¢y = @, xny = band ¢y < x; < + -+ < xy forms a partition of [a@, b] whose
mesh approaches zero as N — 0.

The steps in computing the Laplace integral of the delta function appear below. Admittedly,
the proof requires advanced calculus skills and a certain level of mathematical maturity.
The reward is a fuller understanding of the Dirac symbol 8 ().



Proof of L(6(t — a)) = e **

Slide 2 of 3
L(6(t—a)) = [ e *5(t — a)dt Laplace integral, a > 0
assumed.
= [ e *dH(t — a) Replace 6(t — a)dt by
dH(t — a).
= limy/_, o fOM e *"dH(t — a) Definition of improper inte-
gral.

= e % Explained below.



Proof of L(6(t — a)) = e **
Slide 3 of 3
To explain the last step, apply the definition of the Riemann-Stieltjes integral:

N-1

M
—st . I —st, . . .
/0 e~'dH(t —a) = lim ;e (H(t, — a) — H(t,_, — a))

where 0 = ty < t; < +-+ < ty = M is a partition of [0, M] whose mesh
max;<,<n(t, — t,_1) approaches zero as N — oo. Given a partition, if t,,_; <
a < t,, then H(t,—a)— H(t,_; —a) = 1, otherwise this factor is zero. Therefore,
the sum reduces to a single term e ~%'~. This term approaches e ** as N — o0, because
t,, must approach a.



e—CLS

Proof of L(floor(t/a)) =
s(1 — e—29)
Slide 1 of 3
The library function floor present in computer languages C and Fortran is defined by
floor(x) = greatest whole integer < z, e.g., floor(5.2) = 5 and floor(—1.9) =
—2. The computation of the Laplace integral of floor(t) requires ideas from infinite se-

ries, as follows.

F(s) = [, floor(t)e *'dt Laplace integral definition.
= i f:“(n)e_“dt On n < ¢ < a==ail
floor(t) = n.

n

=B (e — c ") Evaluate each integral.
S

= &= .
) Common factor removed.

S



e—as

Proof of L(floor(t/a)) =
s(1 — e29)
Slide 2 of 3
x(l —x
= z(1 — ) >, nx! Define x = e*.
S
x(l—x) d
= ( ) Yo X" Term-by-term differentiation.
S dx -
x(l—x)d 1 _ _
= Geometric series sum.
S drl —x
T
= — Compute the derivative, sim-
s(1 —x) olify.
e—S

= Substitute € = e~*°.
s(1 —e?)



Proof of L(floor(t/a)) =

Slide 3 of 3

—as

e
s(1 — e—29)

To evaluate the Laplace integral of floor(t/a), a change of variables is made.

L(floor(t/a)) =

[ floor(t/a)e*tdt
a [,” floor(r)e~*"dr
aF(as)

e—as
s(1 — e29)

Laplace integral definition.

Change variables t = ar.

Apply the formula for
F(s).

Simplify.



1
Proof of L(sqw(t/a)) = —tanh(as/2)
Slide 1 of 3 i
The square wave defined by sqw(x) = (—1)ﬂ°°r(“”) is periodic of period 2 and
piecewise-defined. Let P = f02 sqw(t)e *'dt.

P = fol sqw(t)e **dt + ff sqw(t)e **dt Apply fb = [+ fb_

= fol e tdt — ff e stdt Usesqw(z) =10on0 < x <
land sqw(x) = —1onl <
r < 2.
1
=—(1—e®)+ —(e% —e) Evaluate each integral.
S S
= —(1 — e™%)? Collect terms.

S



1

Proof of L(sqw(t/a)) = —tanh(as/2)
s

Slide 2 of 3 — Compute L(sqw(t))

[ sqw(t)e *tdt

L(sqw(t)) = Periodic function formula.

1 —e 2
1 1 _
= —(1 — e~*)>——. Use the computation of P above.
S 1 —e 2
11 —e°
=——. Factor
9l 5= & 1—e?=(1—e*)(1+e™).
163/2 _ 6—3/2
= . Multiply the fraction by e*/2 /e*/2.
ses/2 + e—5s/2
1 sinh(s/2
= — (s/ ) Use sinhu = (e* — e™)/2,
s cosh(s/2) coshu = (e* 4+ e ") /2.

1
= —tanh(s/2). Use tanh v = sinh u/ cosh u.
S



Proof of L(sqw(t/a)) = % tanh(as/2)

Slide 3 of 3
To complete the computation of L(sqw(t/a)), a change of variables is made:
L(sqw(t/a)) = [, sqw(t/a)e *dt Direct transform.
= [ sqw(r)e *"(a)dr Change variables r =
t/a.
a
= —tanh(as/2) See L(sqw(t)) above.
as

1
= —tanh(as/2)
S



1
Proof of L(a trw(¢/a)) = — tanh(as/2)
S

The triangular wave is defined by trw(t) = fot sqw(x)dx.

L(atrw(t/a)) = f(0) + L)) Let f(t) = atrw(t/a). Use
iy L(f'(t)) = sL(f(t)) — £(0).
= 1L(sqw(t/a,)) Use f(0) = 0, then use
5 (a [ sqw(z)dx)’ = sqw(t/a).

1
= — tanh(as/2) Table entry for sqw.
S




'l+ o

Proof of L(t*) =
Sl—l—a
L(t*) = [” te *'dt Definition of Laplace integral.
= [ (u/s)*e "du/s Change variables u = st, du = sdt.
1
= f, u“e “du Because s=constant for u-integration.
S (87
1 o
= I'(1+ o). Because I'(x) = [, u® ‘e “du.



Gamma Function

The generalized factorial function T'(x) is defined for & > 0 and it agrees with the
classical factorial n! = (1)(2) -+ - (n) in case * = n + 1 is an integer. In literature,
a! means I'(1 4+ ). For more details about the Gamma function, see Abramowitz and
Stegun or maple documentation.

[T
Proof of L(t=1/2) = |/ —
s

r@+(-1/2))

gl—1/2

= Use I'(1/2) = /.

L(t™1/?) = Apply the previous formula.



