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5.4 Heaviside’s Method

This practical method was popularized by the English electrical engineer
Oliver Heaviside (1850–1925). A typical application of the method is to
solve

2s

(s + 1)(s2 + 1)
= L(f(t))

for the t-expression f(t) = −e−t +cos t+sin t. The details in Heaviside’s
method involve a sequence of easy-to-learn college algebra steps.

More precisely, Heaviside’s method systematically converts a polyno-
mial quotient

a0 + a1s + · · ·+ ansn

b0 + b1s + · · ·+ bmsm
(1)

into the form L(f(t)) for some expression f(t). It is assumed that
a0, .., an, b0, . . . , bm are constants and the polynomial quotient (1) has
limit zero at s = ∞.

Partial Fraction Theory

In college algebra, it is shown that a rational function (1) can be ex-
pressed as the sum of partial fractions, which are terms of the form

A

(s− s0)k
.(2)

In (2), A is a real or complex constant and (s− s0)k divides the denom-
inator in (1). In particular, s0 is a root of the denominator in (1).

Assume fraction (1) has real coefficients. If s0 in (2) is real, then A is
real. If s0 = α + iβ in (2) is complex, then (s− s0)k also appears, where
s0 = α − iβ is the complex conjugate of s0. The corresponding terms
in (2) turn out to be complex conjugates of one another, which can be
combined in terms of real numbers B and C as

A

(s− s0)k
+

A

(s− s0)k
=

B + C s

((s− α)2 + β2)k
.(3)

Simple Roots. Assume that (1) has real coefficients and the denomi-
nator of the fraction (1) has distinct real roots s1, . . . , sN and distinct
complex roots α1± iβ1, . . . , αM ± iβM . The partial fraction expansion
of (1) is a sum given in terms of real constants Ap, Bq, Cq by

a0 + a1s + · · ·+ ansn

b0 + b1s + · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)
(s− αq)2 + β2

q

.(4)
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Multiple Roots. Assume (1) has real coefficients and the denomi-
nator of the fraction (1) has possibly multiple roots. Let Np be the
multiplicity of real root sp and let Mq be the multiplicity of complex root
αq + iβq, 1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction expansion of (1)
is given in terms of real constants Ap,k, Bq,k, Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)
((s− αq)2 + β2

q )k
.(5)

A Failsafe Method

Consider the expansion in partial fractions

s− 1
s(s + 1)2(s2 + 1)

=
A

s
+

B

s + 1
+

C

(s + 1)2
+

Ds + E

s2 + 1
.(6)

The five undetermined real constants A through E are found by clearing
the fractions, that is, multiply (6) by the denominator on the left to
obtain the polynomial equation

s− 1 = A(s + 1)2(s2 + 1) + Bs(s + 1)(s2 + 1)
+Cs(s2 + 1) + (Ds + E)s(s + 1)2.

(7)

Next, five different values of s are substituted into (7) to obtain equations
for the five unknowns A through E. We always use the roots of the
denominator to start: s = 0, s = −1, s = i, s = −i are the roots of
s(s + 1)2(s2 + 1) = 0 . Each complex root results in two equations, by
taking real and imaginary parts. The complex conjugate root s = −i
is not used, because it duplicates the existing equation obtained from
s = i. The three roots s = 0, s = −1, s = i give only four equations, so
s = 1 is used to get the fifth equation:

−1 = A (s = 0)
−2 = −2C − 2(−D + E) (s = −1)

i− 1 = (Di + E)i(i + 1)2 (s = i)
0 = 8A + 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two
equations, as follows.

i− 1 = (Di + E)i(i2 + 2i + 1) Expand power.

i− 1 = −2Di− 2E Simplify using i2 = −1.

1 = −2D Equate imaginary parts.

−1 = −2E Equate real parts.

Solving the 5 × 5 system, the answers are A = −1, B = 2, C = 0,
D = −1/2, E = 1/2.
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Heaviside’s Coverup Method

The method applies only to the case of distinct roots of the denominator
in (1). Extensions to multiple-root cases can be made; see page 233.

To illustrate Oliver Heaviside’s ideas, consider the problem details

2s + 1
s(s− 1)(s + 1)

=
A

s
+

B

s− 1
+

C

s + 1
(9)

= L(A) + L(Bet) + L(Ce−t)

= L(A + Bet + Ce−t)

The first line (9) uses college algebra partial fractions. The second and
third lines use the Laplace integral table and properties of L.

Heaviside’s mysterious method. Oliver Heaviside proposed to
find in (9) the constant C = −1

2 by a cover–up method:

2s + 1
s(s− 1)

∣∣∣∣∣
s+1 =0

=
C

.

The instructions are to cover–up the matching factors (s+1) on the left
and right with box , then evaluate on the left at the root s which
makes the contents of the box zero. The other terms on the right are
replaced by zero.

To justify Heaviside’s cover–up method, clear the fraction C/(s + 1),
that is, multiply (9) by the denominator s + 1 of the partial fraction
C/(s + 1) to obtain:

(2s + 1) (s + 1)

s(s− 1) (s + 1)
=

A (s + 1)

s
+

B (s + 1)

s− 1
+

C (s + 1)

(s + 1)
.

Set (s + 1) = 0 in the display. Cancellations left and right plus annihi-
lation of two terms on the right gives Heaviside’s prescription

2s + 1
s(s− 1)

∣∣∣∣
s+1=0

= C.

The factor (s + 1) in (9) is by no means special: the same procedure
applies to find A and B. The method works for denominators with
simple roots, that is, no repeated roots are allowed.
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Extension to Multiple Roots. An extension of Heaviside’s method
is possible for the case of repeated roots. The basic idea is to factor–out
the repeats. To illustrate, consider the partial fraction expansion details

R =
1

(s + 1)2(s + 2)
A sample rational function having
repeated roots.

=
1

s + 1

(
1

(s + 1)(s + 2)

)
Factor–out the repeats.

=
1

s + 1

(
1

s + 1
+

−1
s + 2

)
Apply the cover–up method to the
simple root fraction.

=
1

(s + 1)2
+

−1
(s + 1)(s + 2)

Multiply.

=
1

(s + 1)2
+

−1
s + 1

+
1

s + 2
Apply the cover–up method to the
last fraction on the right.

Terms with only one root in the denominator are already partial frac-
tions. Thus the work centers on expansion of quotients in which the
denominator has two or more roots.

Special Methods. Heaviside’s method has a useful extension for the
case of roots of multiplicity two. To illustrate, consider these details:

R =
1

(s + 1)2(s + 2)
A fraction with multiple roots.

=
A

s + 1
+

B

(s + 1)2
+

C

s + 2
See equation (5).

=
A

s + 1
+

1
(s + 1)2

+
1

s + 2
Find B and C by Heaviside’s cover–
up method.

=
−1

s + 1
+

1
(s + 1)2

+
1

s + 2
Multiply by s+1. Set s = ∞. Then
0 = A + 1.

The illustration works for one root of multiplicity two, because s = ∞
will resolve the coefficient not found by the cover–up method.

In general, if the denominator in (1) has a root s0 of multiplicity k, then
the partial fraction expansion contains terms

A1

s− s0
+

A2

(s− s0)2
+ · · ·+ Ak

(s− s0)k
.

Heaviside’s cover–up method directly finds Ak, but not A1 to Ak−1.


