Stability of Dynamical systems

- Stability
- Isolated equilibria
- Classification of Isolated Equilibria
- Attractor and Repeller
- Almost linear systems
- Jacobian Matrix

Stability

Consider an autonomous system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ with \vec{f} continuously differentiable in a region D in the plane.

Stable equilibrium. An equilibrium point \vec{u}_0 in D is said to be stable provided for each $\epsilon > 0$ there corresponds $\delta > 0$ such that (a) and (b) hold:

(a) Given $\vec{u}(0)$ in D with $\|\vec{u}(0) - \vec{u}_0\| < \delta$, then $\vec{u}(t)$ exists on $0 \le t < \infty$. (b) Inequality $\|\vec{u}(t) - \vec{u}_0\| < \epsilon$ holds for $0 \le t < \infty$.

Unstable equilibrium. The equilibrium point \vec{u}_0 is called unstable provided it is not stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point \vec{u}_0 is said to be asymptotically stable provided (a) and (b) hold (it is stable), and additionally

(c) $\lim_{t\to\infty} \|\vec{u}(t) - \vec{u}_0\| = 0$ for $\|\vec{u}(0) - \vec{u}_0\| < \delta$.

Isolated equilibria

An autonomous system is said to have an **isolated equilibrium** at $\vec{u} = \vec{u}_0$ provided \vec{u}_0 is the only constant solution of the system in $|\vec{u} - \vec{u}_0| < r$, for r > 0 sufficiently small.

Theorem 1 (Isolated Equilibrium)

The following are equivalent for a constant planar system $\vec{u}'(t) = A\vec{u}(t)$:

- 1. The system has an isolated equilibrium at $\vec{u} = \vec{0}$.
- 2. $det(A) \neq 0$.
- 3. The roots λ_1 , λ_2 of $\det(A \lambda I) = 0$ satisfy $\lambda_1 \lambda_2
 eq 0$.

Proof: The expansion det $(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$ shows that det $(A) = \lambda_1\lambda_2$. Hence $2 \equiv 3$. We prove now $1 \equiv 2$. If det(A) = 0, then $A\vec{u} = \vec{0}$ has infinitely many solutions \vec{u} on a line through $\vec{0}$, therefore $\vec{u} = \vec{0}$ is not an isolated equilibrium. If det $(A) \neq 0$, then $A\vec{u} = \vec{0}$ has exactly one solution $\vec{u} = \vec{0}$, so the system has an isolated equilibrium at $\vec{u} = \vec{0}$.

Classification of Isolated Equilibria

For linear equations

 $\vec{\mathrm{u}}'(t) = A\vec{\mathrm{u}}(t),$

we explain the phase portrait classifications

saddle, node, spiral, center

near an isolated equilibrium point $\vec{u} = \vec{0}$, and how to detect these classifications, when they occur.

Symbols λ_1 , λ_2 are the roots of $\det(A - \lambda I) = 0$.

Atoms corresponding to roots λ_1 , λ_2 happen to classify the phase portrait as well as its stability. A shortcut will be explained to determine a classification, *based only on the atoms*.

Figure 1. Saddle

Figure 3. Proper node

Figure 5. Center

Figure 2. Improper node

Figure 4. Spiral

Saddle λ_1, λ_2 real, $\lambda_1 \lambda_2 < 0$ A saddle has solution formula $ec{u}(t) = e^{\lambda_1 t} ec{c}_1 + e^{\lambda_2 t} ec{c}_2,$

$$ec{\mathbf{c}}_1 = rac{A-\lambda_2 I}{\lambda_1-\lambda_2} \,ec{\mathbf{u}}(0), \quad ec{\mathbf{c}}_2 = rac{A-\lambda_1 I}{\lambda_2-\lambda_1} \,ec{\mathbf{u}}(0)$$

The phase portrait shows two lines through the origin which are tangents at $t = \pm \infty$ for all orbits.

A saddle is **unstable** at $t = \infty$ and $t = -\infty$, due to the limits of the atoms $e^{r_1 t}$, $e^{r_2 t}$ at $t = \pm \infty$.

Node

 λ_1,λ_2 real, $\lambda_1\lambda_2>0$

Case $\lambda_1 = \lambda_2$. An improper node has solution formula

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{\lambda_1 t}\,ec{\mathrm{c}}_1 + t e^{\lambda_1 t}\,ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= ec{\mathrm{u}}(0), \ \ ec{\mathrm{c}}_2 &= (A-\lambda_1 I)ec{\mathrm{u}}(0). \end{aligned}$$

An improper node is further classified as a **degenerate node** ($\vec{c}_2 \neq \vec{0}$) or a **star node** ($\vec{c}_2 = \vec{0}$). Discussed below is **subcase** $\lambda_1 = \lambda_2 < 0$. For **subcase** $\lambda_1 = \lambda_2 > 0$, replace ∞ by $-\infty$.

degenerate node	A phase portrait has all trajectories tan-
	gent at $t=\infty$ to direction $ec{ ext{c}}_2$.
star node	A phase portrait consists of trajectories
	$ec{{ m u}}(t)=e^{\lambda_1 t}ec{{ m c}}_1$, a straight line, with limit
	$ec{0}$ at $t=\infty$. Vector $ec{ ext{c}}_1$ can be any direc-
	tion.

Node

λ_1,λ_2 real, $\lambda_1\lambda_2>0$

Case $\lambda_1 \neq \lambda_2$. A proper node is any node that is not improper. Its solution formula is

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{\lambda_1 t}ec{\mathrm{c}}_1 + e^{\lambda_2 t}ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= rac{A-\lambda_2 I}{\lambda_1-\lambda_2} \,ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= rac{A-\lambda_1 I}{\lambda_2-\lambda_1} \,ec{\mathrm{u}}(0). \end{aligned}$$

- A trajectory near a proper node satisfies, for some direction \vec{v} , $\lim_{t\to\omega} \vec{u}'(t)/|\vec{u}'(t)| = \vec{v}$, for either $\omega = \infty$ or $\omega = -\infty$. Briefly, $\vec{u}(t)$ is tangent to \vec{v} at $t = \omega$.
- To each direction \vec{v} corresponds some $\vec{u}(t)$ tangent to \vec{v} .

Spiral

 $\lambda_1 = \overline{\lambda}_2 = a + ib$ complex, a
eq 0, b > 0. A **spiral** has solution formula

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{at}\cos(bt)\,ec{\mathrm{c}}_1 + e^{at}\sin(bt)\,ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= rac{A-aI}{b}\,ec{\mathrm{u}}(0). \end{aligned}$$

All solutions are bounded harmonic oscillations of natural frequency b times an exponential amplitude which grows if a > 0 and decays if a < 0. An orbit in the phase plane **spirals out** if a > 0 and spirals in if a < 0.

 $\begin{array}{ll} \text{Center} & \lambda_1 = \overline{\lambda}_2 = a + ib \text{ complex}, \, a = 0, \, b > 0 \\ & \text{A center has solution formula} \\ & \vec{\mathrm{u}}(t) = \cos(bt) \, \vec{\mathrm{c}}_1 + \sin(bt) \, \vec{\mathrm{c}}_2, \\ & \vec{\mathrm{c}}_1 = \vec{\mathrm{u}}(0), \quad \vec{\mathrm{c}}_2 = \frac{1}{b} \, A \vec{\mathrm{u}}(0). \end{array}$

All solutions are bounded harmonic oscillations of natural frequency *b*. Orbits in the phase plane are periodic closed curves of period $2\pi/b$ which encircle the origin.

Attractor and Repeller

- An equilibrium point is called an **attractor** provided solutions starting nearby limit to the point as $t \to \infty$.
- A repeller is an equilibrium point such that solutions starting nearby limit to the point as $t \to -\infty$.
- Terms like **attracting node** and **repelling spiral** are defined analogously.

Almost linear systems

A nonlinear planar autonomous system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ is called **almost linear** at equilibrium point $\vec{u} = \vec{u}_0$ if there is a 2×2 matrix A and a vector function \vec{g} such that

$$egin{aligned} ec{\mathrm{f}}(ec{\mathrm{u}}) &= A(ec{\mathrm{u}} - ec{\mathrm{u}}_0) + ec{\mathrm{g}}(ec{\mathrm{u}}), \ ec{\mathrm{g}}(ec{\mathrm{u}}) &= \ ec{\mathrm{g}}(ec{\mathrm{g}}) &= \ e$$

The function \vec{g} has the same smoothness as \vec{f} .

We investigate the possibility that a local phase diagram at $\vec{u} = \vec{u}_0$ for the nonlinear system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ is graphically identical to the one for the linear system $\vec{y}'(t) = A\vec{y}(t)$ at $\vec{y} = 0$.

Jacobian Matrix

Almost linear system results will apply to **all isolated equilibria** of $\vec{u}'(t) = \vec{f}(\vec{u}(t))$. This is accomplished by expanding f in a Taylor series about each equilibrium point, which implies that the ideas are applicable to different choices of A and g, depending upon which equilibrium point \vec{u}_0 was considered.

Define the Jacobian matrix of \vec{f} at equilibrium point \vec{u}_0 by the formula

$$J = \mathrm{aug}\left(\partial_1\, ec{\mathrm{f}}(ec{\mathrm{u}}_0), \partial_2\, ec{\mathrm{f}}(ec{\mathrm{u}}_0)
ight).$$

Taylor's theorem for functions of two variables says that

$$ec{\mathrm{f}}(ec{\mathrm{u}}) = J(ec{\mathrm{u}}-ec{\mathrm{u}}_0) + ec{\mathrm{g}}(ec{\mathrm{u}})$$

where $\vec{g}(\vec{u})/||\vec{u} - \vec{u}_0|| \rightarrow 0$ as $||\vec{u} - \vec{u}_0|| \rightarrow 0$. Therefore, for \vec{f} continuously differentiable, we may always take A = J to obtain from the almost linear system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ its linearization $y'(t) = A\vec{y}(t)$.