Contents

- Separable Equation
- Finding a Separable Form
- Theorem: Separability Test
- Non-Separability Tests: Test I and Test II
- Illustration $\boldsymbol{y}^{\prime}=\boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}$.
- Variables-Separable Method
- Equilibrium Solutions
- Non-Equilibrium Solutions.
- Finding Non-Equilibrium Solutions
* preparation for quadrature
* method of quadrature
* Explicit and Implicit Solutions

Definition (Separable Equation). An equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is called separable provided there exists functions $\boldsymbol{F}(\boldsymbol{x})$ and $\boldsymbol{G}(\boldsymbol{y})$ such that

$$
f(x, y)=F(x) G(y)
$$

Definition (Separated Form of a Separable Equation). This is the equation

$$
y^{\prime} / G(y)=F(x)
$$

It is obtained from the separable equation $\boldsymbol{y}^{\prime}=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ by dividing by $\boldsymbol{G}(\boldsymbol{y})$. Such an equation is said to be prepared for quadrature, because the LHS is independent of \boldsymbol{x} and the RHS is independent of \boldsymbol{y}.

Finding a Separable Form

Given differential equation $y^{\prime}=f(x, y)$, invent values x_{0}, y_{0} such that $f\left(x_{0}, y_{0}\right) \neq$ $\mathbf{0}$. Define $\boldsymbol{F}, \boldsymbol{G}$ by the formulas

$$
\begin{equation*}
F(x)=\frac{f\left(x, y_{0}\right)}{f\left(x_{0}, y_{0}\right)}, \quad G(y)=f\left(x_{0}, y\right) \tag{1}
\end{equation*}
$$

Because $\boldsymbol{f}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{\mathbf{0}}\right) \neq \mathbf{0}$, then (1) makes sense. Test I infra implies the following test.

Theorem 1 (Separability Test)

Let \boldsymbol{F} and \boldsymbol{G} be defined by (1). Multiply $\boldsymbol{F} \boldsymbol{G}$. Then
(a) If $\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, then $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is separable.
(b) If $F(x) G(y) \neq f(x, y)$, then $y^{\prime}=f(x, y)$ is not separable.

Invention and Application

Initially, let $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ be $(\mathbf{0}, \mathbf{0})$ or $(\mathbf{1}, \mathbf{1})$ or some suitable pair, for which $f\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \neq \mathbf{0}$; then define \boldsymbol{F} and \boldsymbol{G} by (1). Multiply to test the equation $\boldsymbol{F G}=\boldsymbol{f}$.
The algebra will discover a factorization $f=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ without having to know algebraic tricks like factorizing multi-variable equations. But if $\boldsymbol{F G} \neq f$, then the algebra proves the equation is not separable.

Non-Separability Tests

Test I. Equation $y^{\prime}=f(x, y)$ is not separable provided for some pair of points $\left(x_{0}, y_{0}\right)$, (x, y) in the domain of $f,(2)$ holds:

$$
\begin{equation*}
f\left(x, y_{0}\right) f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right) f(x, y) \neq 0 \tag{2}
\end{equation*}
$$

Test II. The equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is not separable if either of the following conditions hold:

- $f_{x}(x, y) / f(x, y)$ is non-constant in y
or
- $f_{y}(x, y) / f(x, y)$ is non-constant in \boldsymbol{x}.

Test I details

Assume $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$, then equation (2) fails because each term on the left side of (2) equals $\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}\left(\boldsymbol{y}_{0}\right) \boldsymbol{F}\left(\boldsymbol{x}_{0}\right) \boldsymbol{G}(\boldsymbol{y})$ for all choices of $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ and $(\boldsymbol{x}, \boldsymbol{y})$ (hence contradiction $0 \neq 0$).

Test II details
Assume $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ and suppose $\boldsymbol{F}, \boldsymbol{G}$ are sufficiently differentiable. Then

- $\frac{f_{x}(x, y)}{f(x, y)}=\frac{F^{\prime}(x)}{F(x)}$ is independent of y
and
- $\frac{f_{y}(x, y)}{f(x, y)}=\frac{G^{\prime}(y)}{G(y)}$ is independent of x.

Illustration

Consider $\boldsymbol{y}^{\prime}=\boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}$.
Test I implies it is not separable, because the left side of the relation is

$$
\begin{aligned}
\text { LHS } & =f(x, 1) f(0, y)-f(0,1) f(x, y) \\
& =(x+1) y^{2}-\left(x y+y^{2}\right) \\
& =x\left(y^{2}-y\right) \\
& \neq 0
\end{aligned}
$$

Test II implies it is not separable, because

$$
\frac{f_{x}}{f}=\frac{1}{x+y}
$$

is not constant as a function of \boldsymbol{y}.

Variables-Separable Method

The method determines two kinds of solution formulas.

Equilibrium Solutions.

They are the constant solutions $\boldsymbol{y}=\boldsymbol{c}$ of $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$. For any equation, find them by substituting $\boldsymbol{y}=\boldsymbol{c}$ into the differential equation.

Non-Equilibrium Solutions.

For a separable equation

$$
y^{\prime}=F(x) G(y)
$$

a non-equilibrium solution \boldsymbol{y} is a solution with $\boldsymbol{G}(\boldsymbol{y}) \neq 0$. It is found by dividing by $\boldsymbol{G}(\boldsymbol{y})$, then applying the method of quadrature.

Theory of Non-Equilibrium Solutions

A given solution $\boldsymbol{y}(\boldsymbol{x})$ satisfying $\boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x})) \neq \mathbf{0}$ throughout its domain of definition is called a non-equilibrium solution. Then division by $\boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x}))$ is allowed.
The method of quadrature applies to the separated equation $\boldsymbol{y}^{\prime} / \boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x}))=\boldsymbol{F}(\boldsymbol{x})$. Some details:

$$
\begin{aligned}
& \int_{x_{0}}^{x} \frac{y^{\prime}(t) d t}{G(y(t))}=\int_{x_{0}}^{x} F(t) d t \\
& \int_{y_{0}}^{y(x)} \frac{d u}{G(u)}=\int_{x_{0}}^{x} F(t) d t \\
& y(x)=W^{-1}\left(\int_{x_{0}}^{x} F(t) d t\right)
\end{aligned}
$$

Integrate both sides of the separated equation over $x_{0} \leq t \leq x$.

Apply on the left the change of variables $u=$ $\boldsymbol{y}(t)$. Define $\boldsymbol{y}_{0}=\boldsymbol{y}\left(\boldsymbol{x}_{0}\right)$.
Define $W(y)=\int_{y_{0}}^{y} d u / G(u)$. Take inverses to isolate $\boldsymbol{y}(\boldsymbol{x})$.

In practise, the last step with \boldsymbol{W}^{-1} is never done. The preceding formula is called the implicit solution. Some work is done to find algebraically an explicit solution, as is given by \boldsymbol{W}^{-1}.

Explicit and Implicit Solutions

Definition 1 (Explicit Solution)

A solution of $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is called explicit provided it is given by an equation

$$
\boldsymbol{y}=\text { an expression independent of } \boldsymbol{y}
$$

To elaborate, on the left side must appear exactly the symbol \boldsymbol{y} followed by an equal sign. Symbols \boldsymbol{y} and $=$ are followed by an expression which does not contain the symbol \boldsymbol{y}.

Definition 2 (Implicit Solution)

A solution of $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is called implicit provided it is not explicit.

Examples

- Explicit solutions: $y=1, y=x, y=f(x), y=0, y=-1+x^{2}$
- Implicit Solutions: $2 y=2, y^{2}=x, y+x=0, y=x y^{2}+1, y+1=x^{2}$, $x^{2}+y^{2}=1, F(x, y)=c$

The General Solution of $y^{\prime}=2 x(y-3)$

- The variables-separable method gives equilibrium solutions $\boldsymbol{y}=\boldsymbol{c}$, which are already explicit. In this case, $\boldsymbol{y}=\mathbf{3}$ is an equilibrium solution.
- Because $\boldsymbol{F}=2 \boldsymbol{x}, \boldsymbol{G}=\boldsymbol{y}-3$, then division by \boldsymbol{G} gives the quadrature-prepared equation $y^{\prime} /(y-3)=2 \boldsymbol{x}$. A quadrature step gives the implicit solution

$$
\ln |y-3|=x^{2}+C
$$

- The non-equilibrium solutions may be left in implicit form, giving the general solution as the list

$$
L_{1}=\left\{y=3, \ln |y-3|=x^{2}+C\right\}
$$

- Algebra can be applied to $\ln |y-3|=x^{2}+C$ to write it as $y=3+k e^{x^{2}}$ where $\boldsymbol{k} \neq 0$. Then general solution L_{1} can be re-written as

$$
L_{2}=\left\{y=3, y=3+k e^{x^{2}}\right\} .
$$

List \boldsymbol{L}_{2} can be distilled to the single formula $\boldsymbol{y}=3+\boldsymbol{c} \boldsymbol{e}^{\boldsymbol{x}^{2}}$, but \boldsymbol{L}_{1} has no simpler expression.

