The Integrating Factor Method for a
 Linear Differential Equation
 $$
y^{\prime}+p(x) y=r(x)
$$

Contents

- Superposition $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$
- Variation of Parameters
- Integrating Factor Identity
- The Integrating Factor Method
- Example $\boldsymbol{x} \boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$.

Superposition

Consider the homogeneous equation

$$
\begin{equation*}
y^{\prime}+p(x) y=0 \tag{1}
\end{equation*}
$$

and the non-homogeneous equation

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x) \tag{2}
\end{equation*}
$$

where \boldsymbol{p} and \boldsymbol{r} are continuous in an interval \boldsymbol{J}.

Theorem 1 (Superposition)

The general solution of the non-homogeneous equation (2) is given by

$$
\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}
$$

where \boldsymbol{y}_{h} is the general solution of homogeneous equation (1) and \boldsymbol{y}_{p} is a particular solution of non-homogeneous equation (2).

Variation of Parameters

\qquad
The initial value problem

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x), \quad y\left(x_{0}\right)=0 \tag{3}
\end{equation*}
$$

where \boldsymbol{p} and \boldsymbol{r} are continuous in an interval containing $\boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}$, has a particular solution

$$
\begin{equation*}
y(x)=e^{-\int_{x_{0}}^{x} p(s) d s} \int_{x_{0}}^{x} r(t) e^{\int_{x_{0}}^{t} p(s) d s} d t \tag{4}
\end{equation*}
$$

Formula (4) is called variation of parameters, for historical reasons.
The formula determines a particular solution \boldsymbol{y}_{p} which can be used in the superposition identity $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$.

While (4) has some appeal, applications use the integrating factor method, which is developed with indefinite integrals for computational efficiency. No one memorizes (4); they remember and study the method.

Integrating Factor Identity

The technique called the integrating factor method uses the replacement rule

$$
\begin{equation*}
\text { Fraction } \frac{(\boldsymbol{Y} W)^{\prime}}{W} \text { replaces } \boldsymbol{Y}^{\prime}+p(x) Y, \text { where } W=e^{\int p(x) d x} \tag{5}
\end{equation*}
$$

The factor $\boldsymbol{W}=e^{\int p(x) d x}$ in (5) is called an integrating factor.
Details
Let $\boldsymbol{W}=e^{\int p(x) d x}$. Then $\boldsymbol{W}^{\prime}=p \boldsymbol{W}$, by the rule $\left(e^{x}\right)^{\prime}=e^{x}$, the chain rule and the fundamental theorem of calculus $\left(\int \boldsymbol{p}(\boldsymbol{x}) d \boldsymbol{x}\right)^{\prime}=\boldsymbol{p}(\boldsymbol{x})$.
Let's prove $(\boldsymbol{W} \boldsymbol{Y})^{\prime} / \boldsymbol{W}=\boldsymbol{Y}^{\prime}+\boldsymbol{p} \boldsymbol{Y}$. The derivative product rule implies

$$
\begin{aligned}
(\boldsymbol{Y} W)^{\prime} & =\boldsymbol{Y}^{\prime} \boldsymbol{W}+\boldsymbol{Y} \boldsymbol{W}^{\prime} \\
& =\boldsymbol{Y}^{\prime} W+\boldsymbol{Y} \boldsymbol{W} \boldsymbol{} \\
& =\left(\boldsymbol{Y}^{\prime}+\boldsymbol{p}\right) \boldsymbol{W} .
\end{aligned}
$$

The proof is complete.

The Integrating Factor Method
Standard Rewrite $y^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ in the form $y^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ where Form $\quad \boldsymbol{p}, \boldsymbol{r}$ are continuous. The method applies only in case this is possible.
Find $\boldsymbol{W} \quad$ Find a simplified formula for $\boldsymbol{W}=e^{\int p(x) d x}$. The antiderivative $\int \boldsymbol{p}(\boldsymbol{x}) \boldsymbol{d x}$ can be chosen conveniently.
Prepare for Obtain the new equation $\frac{(y W)^{\prime}}{\boldsymbol{W}}=r$ by replacing the left side
Quadrature Quadrature of $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ by equivalence (5).
Method of Clear fractions to obtain $(\boldsymbol{y} W)^{\prime}=r \boldsymbol{W}$. Apply the method of Quadrature quadrature to get $\boldsymbol{y} \boldsymbol{W}=\int r(x) W(x) d x+C$. Divide by W to isolate the explicit solution $\boldsymbol{y}(\boldsymbol{x})$.
Equation (5) is central to the method, because it collapses the two terms $\boldsymbol{y}^{\prime}+\boldsymbol{p} \boldsymbol{y}$ into a single term $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$; the method of quadrature applies to $(\boldsymbol{y} \boldsymbol{W})^{\prime}=\boldsymbol{r} \boldsymbol{W}$. Literature calls the exponential factor \boldsymbol{W} an integrating factor and equivalence (5) a factorization of $Y^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{Y}$.

Integrating Factor Example

Example. Solve the linear differential equation $\boldsymbol{x} \boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$.
Solution: The standard form of the linear equation is

$$
y^{\prime}+\frac{1}{x} y=x
$$

Let

$$
W=e^{\int \frac{1}{x} d x}=\boldsymbol{x}
$$

and replace the LHS of the differential equation by $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$ to obtain the quadrature equation

$$
(y W)^{\prime}=x W
$$

Apply quadrature to this equation, then divide by \boldsymbol{W}, to give the answer

$$
y=\frac{x^{2}}{3}+\frac{C}{x}
$$

