Laplace Table Derivations

- $L\left(t^{n}\right)=\frac{n!}{s^{1+n}}$
- $L\left(e^{a t}\right)=\frac{1}{s-a}$
- $L(\cos b t)=\frac{s}{s^{2}+b^{2}}$
- $L(\sin b t)=\frac{b}{s^{2}+b^{2}}$
- $L(H(t-a))=\frac{e^{-a s}}{s}$
- $L(\delta(t-a))=e^{-a s}$
- $L(\operatorname{floor}(t / a))=\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$
- $L(\operatorname{sqw}(t / a))=\frac{1}{s} \tanh (a s / 2)$
- $L(a \operatorname{trw}(t / a))=\frac{1}{s^{2}} \tanh (a s / 2)$
- $L\left(t^{\alpha}\right)=\frac{\Gamma(1+\alpha)}{s^{1+\alpha}}$
- $L\left(t^{-1 / 2}\right)=\sqrt{\frac{\pi}{s}}$

Proof of $L\left(t^{n}\right)=n!/ s^{1+n}$

Slide 1 of 3

The first step is to evaluate $L(f(t))$ for $f(t)=t^{0}\left[n=0\right.$ case]. The function t^{0} is written as 1 , but Laplace theory conventions require $f(t)=0$ for $t<0$, therefore $f(t)$ is technically the unit step function.

$$
\begin{aligned}
L(1) & =\int_{0}^{\infty}(1) e^{-s t} d t \\
& =-\left.(1 / s) e^{-s t}\right|_{t=0} ^{t=\infty} \\
& =1 / s
\end{aligned}
$$

Laplace integral of $f(t)=1$.
Evaluate the integral.
Assumed $s>0$ to evaluate $\lim _{t \rightarrow \infty} e^{-s t}$.

Proof of $L\left(t^{n}\right)=n!/ s^{1+n}$

Slide 2 of 3

The value of $L(f(t))$ for $f(t)=t$ can be obtained by s-differentiation of the relation $L(1)=1 / s$, as follows. Technically, $f(t)=0$ for $t<0$, then $f(t)$ is called the ramp function.

$$
\begin{aligned}
\frac{d}{d s} L(1) & =\frac{d}{d s} \int_{0}^{\infty}(1) e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{d}{d s}\left(e^{-s t}\right) d t \\
& =\int_{0}^{\infty}(-t) e^{-s t} d t \\
& =-L(t)
\end{aligned}
$$

Laplace integral for $f(t)=1$.
Used $\frac{d}{d s} \int_{a}^{b} \boldsymbol{F} \boldsymbol{d} \boldsymbol{t}=\int_{a}^{b} \frac{d \boldsymbol{F}}{d s} \boldsymbol{d} \boldsymbol{t}$.
Calculus rule $\left(e^{u}\right)^{\prime}=u^{\prime} e^{u}$.
Definition of $L(t)$.
Then

$$
\begin{aligned}
L(t) & =-\frac{d}{d s} L(1) \\
& =-\frac{d}{d s}(1 / s) \\
& =1 / s^{2}
\end{aligned}
$$

Rewrite last display.
Use $L(1)=1 / s$.
Differentiate.

Proof of $L\left(t^{n}\right)=n!/ s^{1+n}$
Slide 3 of 3
This idea can be repeated to give

$$
\begin{aligned}
L\left(t^{2}\right) & =-\frac{d}{d s} L(t) \\
& =L\left(t^{2}\right) \\
& =\frac{2}{s^{3}} .
\end{aligned}
$$

The pattern is $\boldsymbol{L}\left(\boldsymbol{t}^{n}\right)=-\frac{d}{d s} \boldsymbol{L}\left(\boldsymbol{t}^{n-1}\right)$, which implies the formula

$$
L\left(t^{n}\right)=\frac{n!}{s^{1+n}} .
$$

The proof is complete.

Proof of $L\left(e^{a t}\right)=\frac{1}{s-a}$
The result follows from $L(1)=1 / s$, as follows.

$$
\begin{aligned}
L\left(e^{a t}\right) & =\int_{0}^{\infty} e^{a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} d t \\
& =\int_{0}^{\infty} e^{-S t} d t \\
& =1 / S \\
& =1 /(s-a)
\end{aligned}
$$

Direct Laplace transform.
Use $e^{A} e^{B}=e^{A+B}$.
Substitute $S=s-a$.
Apply $L(1)=1 / s$.
Back-substitute $S=s-a$.

Proof of $L(\cos b t)=\frac{s}{s^{2}+b^{2}}$ and $L(\sin b t)=\frac{b}{s^{2}+b^{2}}$

Slide 1 of 2

Use will be made of Euler's formula

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

usually first introduced in trigonometry. In this formula, $\boldsymbol{\theta}$ is a real number in radians and $i=\sqrt{-1}$ is the complex unit.

$$
\begin{aligned}
e^{i b t} e^{-s t}=(\cos b t) e^{-s t}+i(\sin b t) e^{-s t} \\
\begin{aligned}
\int_{0}^{\infty} e^{-i b t} e^{-s t} d t= & \int_{0}^{\infty}(\cos b t) e^{-s t} d t \\
& +i \int_{0}^{\infty}(\sin b t) e^{-s t} d t
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{s-i b}= & \int_{0}^{\infty}(\cos b t) e^{-s t} d t \\
& +i \int_{0}^{\infty}(\sin b t) e^{-s t} d t
\end{aligned}
$$

Substitute $\boldsymbol{\theta}=\boldsymbol{b} \boldsymbol{t}$ into Euler's formula and multiply by $e^{-s t}$. Integrate $t=0$ to $t=\infty$. Then use properties of integrals.

Evaluate the left hand side using $L\left(e^{a t}\right)=1 /(s-a)$, $a=i b$.

Proof of $L(\cos b t)=\frac{s}{s^{2}+b^{2}}$ and $L(\sin b t)=\frac{b}{s^{2}+b^{2}}$
Slide 2 of 2

$$
\begin{aligned}
\frac{1}{s-i b} & =L(\cos b t)+i L(\sin b t) \\
\frac{s+i b}{s^{2}+b^{2}} & =L(\cos b t)+i L(\sin b t) \\
\frac{s}{s^{2}+b^{2}} & =L(\cos b t) \\
\frac{b}{s^{2}+b^{2}} & =L(\sin b t)
\end{aligned}
$$

Direct Laplace transform definition.

Use complex rule $1 / z=$ $\bar{z} /|z|^{2}, z=A+i B, \bar{z}=$ $A-i B,|z|=\sqrt{A^{2}+B^{2}}$.

Extract the real part.

Extract the imaginary part.

$$
\text { Proof of } L(H(t-a))=e^{-a s} / s
$$

$$
\begin{aligned}
L(H(t-a)) & =\int_{0}^{\infty} H(t-a) e^{-s t} d t \\
& =\int_{a}^{\infty}(1) e^{-s t} d t \\
& =\int_{0}^{\infty}(1) e^{-s(x+a)} d x \\
& =e^{-a s} \int_{0}^{\infty}(1) e^{-s x} d x \\
& =e^{-a s}(1 / s)
\end{aligned}
$$

Direct Laplace transform. Assume $a \geq 0$.
Because $\boldsymbol{H}(\boldsymbol{t}-\boldsymbol{a})=\mathbf{0}$ for $0 \leq t<a$.
Change variables $\boldsymbol{t}=\boldsymbol{x}+\boldsymbol{a}$.
Constant $e^{-a s}$ moves outside integral.
Apply $L(1)=1 / s$.

Proof of $L(\delta(t-a))=e^{-a s}$

Slide 1 of 3

The definition of the delta function is a formal one, in which every occurrence of symbol $\boldsymbol{\delta}(\boldsymbol{t}-\boldsymbol{a}) \boldsymbol{d t}$ under an integrand is replaced by $\boldsymbol{d H}(\boldsymbol{t}-\boldsymbol{a})$. The differential symbol $\boldsymbol{d H}(\boldsymbol{t}-\boldsymbol{a})$ is taken in the sense of the Riemann-Stieltjes integral. This integral is defined in Rudin's Real analysis for monotonic integrators $\alpha(\boldsymbol{x})$ as the limit

$$
\int_{a}^{b} f(x) d \alpha(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f\left(x_{n}\right)\left(\alpha\left(x_{n}\right)-\alpha\left(x_{n-1}\right)\right)
$$

where $\boldsymbol{x}_{0}=\boldsymbol{a}, \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b}$ and $\boldsymbol{x}_{0}<\boldsymbol{x}_{1}<\cdots<\boldsymbol{x}_{\boldsymbol{N}}$ forms a partition of $[\boldsymbol{a}, \boldsymbol{b}]$ whose mesh approaches zero as $\boldsymbol{N} \rightarrow \infty$.
The steps in computing the Laplace integral of the delta function appear below. Admittedly, the proof requires advanced calculus skills and a certain level of mathematical maturity. The reward is a fuller understanding of the Dirac symbol $\boldsymbol{\delta}(\boldsymbol{x})$.

Proof of $L(\delta(t-a))=e^{-a s}$
Slide 2 of 3

$$
\begin{array}{rlrl}
L(\delta(t-a)) & =\int_{0}^{\infty} e^{-s t} \delta(t-a) d t & & \begin{array}{l}
\text { Laplace integral, } a>0 \\
\text { assumed. }
\end{array} \\
& =\int_{0}^{\infty} e^{-s t} d H(t-a) & & \text { Replace } \delta(t-a) d t \text { by } \\
& d H(t-a) . \\
& =\lim _{M \rightarrow \infty} \int_{0}^{M} e^{-s t} d H(t-a) & & \text { Definition of improper inte- } \\
& =e^{-s a} & & \text { gral. } \\
\text { Explained below. }
\end{array}
$$

Proof of $L(\delta(t-a))=e^{-a s}$
Slide 3 of 3
To explain the last step, apply the definition of the Riemann-Stieltjes integral:

$$
\int_{0}^{M} e^{-s t} d H(t-a)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} e^{-s t_{n}}\left(H\left(t_{n}-a\right)-H\left(t_{n-1}-a\right)\right)
$$

where $\mathbf{0}=\boldsymbol{t}_{0}<\boldsymbol{t}_{1}<\cdots<\boldsymbol{t}_{\boldsymbol{N}}=\boldsymbol{M}$ is a partition of $[\mathbf{0}, \boldsymbol{M}]$ whose mesh $\max _{1 \leq n \leq N}\left(\boldsymbol{t}_{n}-\boldsymbol{t}_{n-1}\right)$ approaches zero as $\boldsymbol{N} \rightarrow \infty$. Given a partition, if $\boldsymbol{t}_{n-1}<$ $a \leq t_{n}$, then $\boldsymbol{H}\left(t_{n}-a\right)-\boldsymbol{H}\left(t_{n-1}-a\right)=1$, otherwise this factor is zero. Therefore, the sum reduces to a single term $\boldsymbol{e}^{-s t_{n}}$. This term approaches $\boldsymbol{e}^{-s a}$ as $\boldsymbol{N} \rightarrow \infty$, because $\boldsymbol{t}_{\boldsymbol{n}}$ must approach \boldsymbol{a}.

Proof of $L($ floor $(t / a))=\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$

Slide 1 of 3

The library function floor present in computer languages C and Fortran is defined by floor $(x)=$ greatest whole integer $\leq x$, e.g., floor $(5.2)=5$ and floor $(-1.9)=$ $\mathbf{- 2}$. The computation of the Laplace integral of $\operatorname{floor}(t)$ requires ideas from infinite series, as follows.

$$
\begin{aligned}
\boldsymbol{F}(s) & =\int_{0}^{\infty} \operatorname{floor}(t) e^{-s t} d t \\
& =\sum_{n=0}^{\infty} \int_{n}^{n+1}(n) e^{-s t} d t \\
& =\sum_{n=0}^{\infty} \frac{n}{s}\left(e^{-n s}-e^{-n s-s}\right) \\
& =\frac{1-e^{-s}}{s} \sum_{n=0}^{\infty} n e^{-s n}
\end{aligned}
$$

Laplace integral definition.
On $\boldsymbol{n} \leq \boldsymbol{t}<\boldsymbol{n}+\mathbf{1}$, $\boldsymbol{f l o o r}(t)=\boldsymbol{n}$.

Evaluate each integral.

Common factor removed.
Proof of $L(f l o o r(t / a))=\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$
Slide 2 of 3

$$
\begin{aligned}
& =\frac{x(1-x)}{s} \sum_{n=0}^{\infty} n x^{n-1} \\
& =\frac{x(1-x)}{s} \frac{d}{d x} \sum_{n=0}^{\infty} x^{n} \\
& =\frac{x(1-x)}{s} \frac{d}{d x} \frac{1}{1-x} \\
& =\frac{x}{s(1-x)} \\
& =\frac{e^{-s}}{s\left(1-e^{-s}\right)}
\end{aligned}
$$

Define $\boldsymbol{x}=e^{-s}$.
Term-by-term differentiation.
Geometric series sum.
Compute the derivative, simplify.

Substitute $x=e^{-s}$.
Proof of $L(f l o o r(t / a))=\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$

Slide 3 of 3

To evaluate the Laplace integral of $\operatorname{floor}(\boldsymbol{t} / \boldsymbol{a})$, a change of variables is made.

$$
\begin{aligned}
L(\operatorname{floor}(t / a)) & =\int_{0}^{\infty} \text { floor }(t / a) e^{-s t} d t \\
& =a \int_{0}^{\infty} \text { floor }(r) e^{-a s r} d r \\
& =a F(a s) \\
& =\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}
\end{aligned}
$$

Laplace integral definition. Change variables $\boldsymbol{t}=\boldsymbol{a r}$. Apply the formula for $F(s)$.

Simplify.

Proof of $L(\operatorname{sqw}(t / a))=\frac{1}{s} \tanh (a s / 2)$

Slide 1 of 3

The square wave defined by $\operatorname{sqw}(x)=(-1)^{\text {floor }(x)}$ is periodic of period 2 and piecewise-defined. Let $P=\int_{0}^{2} \mathbf{s q w}(t) e^{-s t} d t$.

$$
\begin{aligned}
P=\int_{0}^{1} \operatorname{sqw}(t) e^{-s t} d t+\int_{1}^{2} \operatorname{sqw}(t) e^{-s t} d t & \\
& \text { Apply } \int_{a}^{b}=\int_{a}^{c}+\int_{c}^{b} \\
=\int_{0}^{1} e^{-s t} d t-\int_{1}^{2} e^{-s t} d t & \\
& \text { Use } \operatorname{sqw}(x)=1 \text { on } 0 \leq x< \\
& 1 \text { and } \operatorname{sqw}(x)=-1 \text { on } 1 \leq \\
& x<2 .
\end{aligned}
$$

$=\frac{1}{s}\left(1-e^{-s}\right)+\frac{1}{s}\left(e^{-2 s}-e^{-s}\right) \quad$ Evaluate each integral.

$$
=\frac{1}{s}\left(1-e^{-s}\right)^{2}
$$

Collect terms.

Proof of $L(\operatorname{sqw}(t / a))=\frac{1}{s} \tanh (a s / 2)$
Slide 2 of 3 - Compute $L(s q w(t))$

$$
\begin{aligned}
L(\mathbf{s q w}(t)) & =\frac{\int_{0}^{2} \operatorname{sqw}(t) e^{-s t} d t}{1-e^{-2 s}} & & \text { Periodic function formula. } \\
& =\frac{1}{s}\left(1-e^{-s}\right)^{2} \frac{1}{1-e^{-2 s}} . & & \text { Use the computation of } P \text { above. } \\
& =\frac{11-e^{-s}}{s} \frac{\text { Factor }}{1+e^{-s}} . & & 1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right) . \\
& =\frac{1}{s} \frac{e^{s / 2}-e^{-s / 2}}{e^{s / 2}+e^{-s / 2}} . & & \text { Multiply the fraction by } e^{s / 2} / e^{s / 2} . \\
& =\frac{1}{s} \frac{\sinh (s / 2)}{\cosh (s / 2)} . & & \begin{array}{l}
\text { Use } \sinh u=\left(e^{u}-e^{-u}\right) / 2 \\
\cosh u=\left(e^{u}+e^{-u}\right) / 2
\end{array} \\
& =\frac{1}{s} \tanh (s / 2) . & & \text { Use tanh } u=\sinh u / \cosh u .
\end{aligned}
$$

Proof of $L(\operatorname{sqw}(t / a))=\frac{1}{s} \tanh (a s / 2)$
Slide 3 of 3
To complete the computation of $\boldsymbol{L}(\mathbf{s q w}(t / a))$, a change of variables is made:

$$
\begin{aligned}
L(\operatorname{sqw}(t / a)) & =\int_{0}^{\infty} \operatorname{sqw}(t / a) e^{-s t} d t \\
& =\int_{0}^{\infty} \operatorname{sqw}(r) e^{-a s r}(a) d r \\
& =\frac{a}{a s} \tanh (a s / 2) \\
& =\frac{1}{s} \tanh (a s / 2)
\end{aligned}
$$

Direct transform.
Change variables $r=$ t / a.
See $L(\operatorname{sqw}(t))$ above.

Proof of $L(a \operatorname{trw}(t / a))=\frac{1}{s^{2}} \tanh (a s / 2)$
The triangular wave is defined by $\operatorname{trw}(t)=\int_{0}^{t} \mathbf{s q w}(x) d x$.

$$
\begin{array}{rlrl}
L(a \operatorname{trw}(t / a)) & =\frac{f(0)+L\left(f^{\prime}(t)\right)}{s} & & \begin{array}{l}
\text { Let } f(t)=a \operatorname{trw}(t / a) . \text { Use } \\
L\left(f^{\prime}(t)\right)=s L(f(t))-f(0) .
\end{array} \\
& =\frac{1}{s} L(\operatorname{sqw}(t / a)) & & \begin{array}{l}
\text { Use } f(0)=0, \text { then use } \\
\left(a \int_{0}^{t / a} \operatorname{sqw}(x) d x\right)^{\prime}=\operatorname{sqw}(t / a)
\end{array} \\
& =\frac{1}{s^{2}} \tanh (a s / 2)
\end{array} \quad \begin{aligned}
& \text { Table entry for sqw. }
\end{aligned}
$$

$$
\text { Proof of } L\left(t^{\alpha}\right)=\frac{\Gamma(1+\alpha)}{s^{1+\alpha}}
$$

$$
\begin{aligned}
L\left(t^{\alpha}\right) & =\int_{0}^{\infty} t^{\alpha} e^{-s t} d t \\
& =\int_{0}^{\infty}(u / s)^{\alpha} e^{-u} d u / s \\
& =\frac{1}{s^{1+\alpha}} \int_{0}^{\infty} u^{\alpha} e^{-u} d u \\
& =\frac{1}{s^{1+\alpha}} \Gamma(1+\alpha)
\end{aligned}
$$

Definition of Laplace integral.
Change variables $u=s t, d u=s d t$.
Because $s=$ constant for \boldsymbol{u}-integration.
Because $\Gamma(x) \equiv \int_{0}^{\infty} u^{x-1} e^{-u} d u$.

Gamma Function

The generalized factorial function $\boldsymbol{\Gamma}(\boldsymbol{x})$ is defined for $\boldsymbol{x}>\boldsymbol{0}$ and it agrees with the classical factorial $n!=(1)(2) \cdots(n)$ in case $x=n+1$ is an integer. In literature, $\alpha!$ means $\Gamma(1+\alpha)$. For more details about the Gamma function, see Abramowitz and Stegun or maple documentation.
Proof of $L\left(t^{-1 / 2}\right)=\sqrt{\frac{\pi}{s}}$

$$
\begin{aligned}
L\left(t^{-1 / 2}\right) & =\frac{\Gamma(1+(-1 / 2))}{s^{1-1 / 2}} & & \text { Apply the previous formula. } \\
& =\frac{\sqrt{\pi}}{\sqrt{s}} & & \text { Use } \Gamma(1 / 2)=\sqrt{\pi}
\end{aligned}
$$

