Math 2280 Extra Credit Problems
Chapter 7
S2009

Due date: Submit these problems when the last section of chapter 4 is due. Records are locked on that date and only corrected, never appended. The scores on Ch7 extra credit can replace any missing score for the entire semester.

Submitted work. Please submit one stapled package with this sheet on top. Kindly check-mark the problems submitted and label the problems [Extra Credit]. Label each problem with its corresponding problem number, e.g., [Xc7.3-20].

Problem Xc7.3-20. (Inverse transform)
Solve for \(f(t) \) in the relation \(\mathcal{L}(f(t)) = \frac{1}{s^4 - 8s^2 + 16} \). Use partial fractions in the details.

Problem Xc7.3-24. (Inverse transform)
Solve for \(f(t) \) in the relation \(\mathcal{L}(f(t)) = \frac{s}{s^4 + 4a^4} \), showing the details that give the answer \(f(t) = \frac{1}{2a^2} \sinh at \sin at \).

Problem Xc7.4-12. (Inverse transform, convolution)
Solve for \(f(t) \) in the relation \(\mathcal{L}(f(t)) = \frac{1}{s(s^2 + 4s + 5)} \). Instead of the convolution theorem, use partial fractions for the details. If you can see how, then check the answer with the convolution theorem.

Problem Xc7.4-26. (Inverse transform techniques)
Use the \(s \)-differentiation theorem in the details of solving for \(f(t) \) in the relation \(\mathcal{L}(f(t)) = \arctan \frac{3}{s + 2} \). You will need to apply the theorem \(\lim_{s \to \infty} \mathcal{L}(f(t)) = 0 \).

Problem Xc7.4-40. (Series methods for transforms)
Expand in a series, using Taylor series formulas, the function \(f(t) = \frac{\cos \sqrt{7}}{\sqrt{\pi}t} \). Then find \(\mathcal{L}(f(t)) \) as a series by Laplace transform of each series term, separately. Finally, re-constitute the series in variable \(s \) into elementary functions, namely \(e^{-1/s} \) divided by \(\sqrt{s} \).

Problem Xc7.5-6. (Second shifting theorem, Heaviside step)
Find the function \(f(t) \) in the relation \(\mathcal{L}(f(t)) = \frac{se^{-s}}{s^2 + \pi^2} \).

Problem Xc7.5-14. (Transforms of piecewise functions)
Let \(f(t) = \begin{cases}
\cos \pi t & 0 \leq t \leq 2, \\
0 & t > 2.
\end{cases} \) Find \(\mathcal{L}(f(t)) \). Details should expand \(f(t) \) as a linear combination of Heaviside step functions.

Problem Xc7.5-26. (Sawtooth wave)
Let \(f(t + a) = f(t) \) and \(f(t) = t \) on \(0 \leq t \leq a \). Then \(f \) is \(a \)-periodic and has a Laplace transform obtained from the periodic function formula. Show the details in the derivation to obtain the answer \(\mathcal{L}(f(t)) = \frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})} \).

Problem Xc7.5-28. (Modified sawtooth wave)
Let \(f(t + 2a) = f(t) \) and \(f(t) = t \) on \(0 \leq t \leq a \), \(f(t) = 0 \) on \(a < t \leq 2a \). Then \(f \) is \(2a \)-periodic and has a Laplace transform obtained from the periodic function formula. Derive a formula for \(\mathcal{L}(f(t)) \).

Problem Xc7.6-8. (Impulsive DE)
Solve by Laplace methods $x'' + 2x' + x = \delta(t) - 2\delta(t - 1)$, $x(0) = 1$, $x'(0) = 1$.

Problem Xc7.6-18. (Switching circuit)
A passive LC-circuit has battery 6 volts and model equation $i'' + 100i = 6\delta(t) - 6\delta(t - 1)$, $x(0) = 1$, $x'(0) = 1$. The switch is closed at time $t = 0$ and opened again at $t = 1$. Solve the equation by Laplace methods and report the number of full cycles observed before the steady-state $i = 0$ is reached.

End of extra credit problems chapter 7.