- 6. (Linear differential equations) Version 2 for 2 April 2009: Do all three parts.
 - (a) [30%] Solve for the general solution of 4y'' + 4y' + 25y = 0.
 - (b) [40%] The characteristic equation is $r^2(r^+2r)^2(r^2-4r+5)=0$. Find the general solution y of the homogeneous constant-coefficient differential equation.
 - (c) [30%] Find a homogeneous second order differential equation with constant coefficients which has two solutions e^x and $e^x + e^{-x/5}$.

(a)
$$4r^2 + 4r + 25 = 0$$
 $2r + 1 = \pm 2\sqrt{6}i$ $2r + 1 = \pm 2\sqrt{6}i$ $2r + 1)^2 + 24 = 0$ $r = -\frac{1}{2} \pm \sqrt{6}i$ $2r + 1 = -\frac{1}{2} \pm \sqrt{6}i$ $2r$

(b)
$$4r^{4}(r^{2}+4r+5)=0$$
 atoms = 1, x, x², x³
 $roots = 0,0,0,0,2 \pm i$ $e^{2x}\cos x$, $e^{2x}\sin x$
 $y = 1.c.$ of atoms

© roots = 1, -1/5
Factors =
$$Y=1.c.$$
 $y=1.c.$ $y=1.c.$