Name KEY

- 6. (Linear differential equations) Version 1 for 2 April 2009: Do all three parts.
 - (a) [30%] Solve for the general solution of 4y'' + 4y' + 73y = 0.
 - (b) [40%] The characteristic equation is $r^2(r^2-2r)^2(r^2-2r+10)=0$. Find the general solution y of the homogeneous constant-coefficient differential equation.
 - (c) [30%] Find a homogeneous second order differential equation with constant coefficients which has two solutions $e^{-x/3}$ and $e^x + e^{-x/3}$.

(a)
$$4r^2 + 4r + 73 = 0$$

 $(2r+1)^2 + 72 = 0$
 $2r+1 = \pm \sqrt{72}i$
 $2r+1 = \pm 6\sqrt{2}i$

$$r = -\frac{1}{2} \pm 3\sqrt{2} i$$

atoms = $e^{-x/2} \cos(3\sqrt{2}x)$
 $e^{-x/2} \sin(3\sqrt{2}x)$
 $y = 1.c. q atoms$

- (b) $r^{4}(r-2)^{2}((r-1)^{2}+9)=0$ $roots=0,0,0,0,0,1\pm3i$ $atoms=1,x,x^{2},x^{3},e^{2x},xe^{2x},e^{x}cos(3x),e^{x}sin(3x)$ y=1.c. of atoms
- © roots an -1/3,1Factors an $r+\frac{1}{3}, r-1$ (3r+1)(r-1)=0 $3r^2+r-3r-1=0$

$$3y^{2}-2y'-y=0$$