Atoms

An **atom** is a term with coefficient **1** obtained by taking the real and imaginary parts of

$$x^j e^{ax+icx}, \hspace{1em} j=0,1,2,\ldots,$$

where a and c represent real numbers and $c \ge 0$.

Theorem 1 ((Independence of Atoms))

Any finite list of distinct atoms is linearly independent.

Details and Remarks

• The definition plus Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ implies that an atom is a term of one of the following types:

 x^n , $x^n e^{ax}$, $x^n e^{ax} \cos bx$, $x^n e^{ax} \sin bx$.

The symbol n is an integer $0, 1, 2, \ldots$ and a, b are real numbers with b > 0.

- In particular, $1, x, x^2, \ldots, x^k$ are atoms and this list is independent.
- The term that makes up an atom has coefficient 1, therefore $2e^x$ is not an atom, but the 2 can be stripped off to create the atom e^x . Linear combinations like $2x + 3x^2$ are not atoms, but the individual terms x and x^2 are indeed atoms. Terms like e^{x^2} , $\ln |x|$ and $x/(1 + x^2)$ are not atoms, nor are they constructed from atoms.

Construction of the general solution from a list of distinct atoms

• The general solution y of a homogeneous constant-coefficient linear differential equation

$$y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0y = 0$$

is known to be a formal linear combination of the atoms of this equation, using symbols c_1 , ..., c_n for the coefficients:

$$y = c_1(\operatorname{atom} 1) + \cdots + c_n(\operatorname{atom} n).$$

In particular, each atom listed is itself a solution of the differential equation.

• Euler's theorem *infra* explains how to construct a list of distinct atoms, each of which is a solution of the differential equation, from the roots of the characteristic equation

$$r^n + p_{n-1}r^{n-1} + \dots + p_1r + p_0 = 0.$$

- The **Fundamental Theorem of Algebra** states that there are exactly *n* roots *r*, real or complex, for an *n*th order polynomial equation. The result explains how we know that the characteristic equation has exactly *n* roots.
- **Picard's theorem** says that the constructed atom list is a **basis** for the solution space of the differential equation, provided it contains *n* independent elements.

Because the list of atoms constructed by Euler's theorem has n distinct elements, which are independent, then these atoms form a **basis** for the general solution of the differential equation.

Euler's Theorem _

Theorem 2 (L. Euler)

The function $y = x^j e^{r_1 x}$ is a solution of a constant-coefficient linear homogeneous differential of the *n*th order if and only if $(r - r_1)^{j+1}$ divides the characteristic polynomial.

The Atom List

1. If r_1 is a real root, then the atom list for r_1 begins with e^{r_1x} . The revised atom list is

$$e^{r_1x}, xe^{r_1x}, \dots, x^{k-1}e^{r_1x}$$

provided r_1 is a root of multiplicity k, that is, $(r-r_1)^k$ divides the characteristic polynomial, but $(r-r_1)^{k+1}$ does not.

2. If $r_1 = \alpha + i\beta$, with $\beta > 0$, is a complex root along with its conjugate root $r_2 = \alpha - i\beta$, then the atom list for this pair of roots (both r_1 and r_2 counted) begins with

$$e^{\alpha x}\cos\beta x, \quad e^{\alpha x}\sin\beta x.$$

If the roots have multiplicity k, then the list of 2k atoms are

$$e^{lpha x}\coseta x, \ xe^{lpha x}\coseta x, \ \ldots, \ x^{k-1}e^{lpha x}\coseta x, \ e^{lpha x}\sineta x, \ xe^{lpha x}\sineta x, \ \ldots, \ x^{k-1}e^{lpha x}\sineta x.$$

Explanation of steps 1 and 2

- 1. Root r_1 always produces atom e^{r_1x} , but if the multiplicity is k > 1, then e^{r_1x} is multiplied by $1, x, \ldots, x^{k-1}$.
- 2. The expected first terms e^{r_1x} and $e^{r_2x} [e^{\alpha x+i\beta x}]$ and $e^{\alpha x-i\beta x}$ are not atoms, but they are linear combinations of atoms:

$$e^{lpha x\pm ieta x}=e^{lpha x}\coseta x\pm ie^{lpha x}\sineta x.$$

The atom list for a complex conjugate pair of roots $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$ is obtained by multiplying the two *real* atoms

by the powers

$$1,x,\ldots,x^{k-1}$$

to obtain the 2k distinct *real* atoms in item 2 above.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui