The Basic Trial Solution Method

The method is outlined here for a second order differential equation ay'' + by' + cy = f(x). The method applies unchanged for nth order equations.

- Step 1. Repeatedly differentiate the atoms of f(x) until no new atoms appear. Collect the distinct atoms so found into a maximal list of k atoms. Multiply these atoms by **undetermined coefficients** d_1, d_2, \ldots, d_k , then add, defining **trial solution** y.
- Step **2**. Substitute y into the differential equation.

Fixup Rule I. If some variable d_p is missing in the substituted equation, then step 2 fails. Correct the trial solution as follows. Variable d_p appears in trial solution y as term $d_p A$, where A is an atom. Multiply A and all its related atoms B by x. The modified expression y is called a **corrected trial solution**. Repeat step 2 until the substituted equation contains all of the variables d_1, \ldots, d_k .

- Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for d_1 , d_2, \ldots, d_k . Solve the equations for the unique solution.
- Step 4. The corrected trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p .

Symbols

The symbols c_1 , c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation. Symbols d_1 , d_2 , d_3 , ... are reserved for use in the trial solution y of the non-homogeneous equation. Abbreviations: c = constant, d = determined.

Superposition

The relation $y=y_h+y_p$ suggests solving $ay^{\prime\prime}+by^{\prime}+cy=f(x)$ in two stages:

- (a) Apply the linear equation **recipe** to find y_h .
- (b) Apply the basic trial solution method to find y_p .

We expect to find two arbitrary constants c_1 , c_2 in the solution y_h , but in contrast, no arbitrary constants appear in y_p . Calling d_1 , d_2 , d_3 , ... undetermined coefficients is misleading, because in fact they are eventually determined.

Fixup rule II

The rule predicts the corrected trial solution y without having to substitute y into the differential equation.

- Write down y_h , the general solution of homogeneous equation ay'' + by' + cy = 0, having arbitrary constants c_1 , c_2 . Create the corrected trial solution y iteratively, as follows.
- Cycle through each term d_pA , where A is a atom. If A is also an atom appearing in y_h , then multiply d_pA and each **related atom** term d_qB by x. Other terms appearing in y are unchanged.
- Repeat until each term $d_p A$ has atom A distinct from all atoms appearing in homogeneous solution y_h . The modified expression y is called the **corrected trial solution**.

Fixup rule III

The rule predicts the corrected trial solution y without substituting it into the differential equation. This iterative algebraic method uses the atom list of the homogeneous equation to create y.

- ullet Write down the roots of the characteristic equation. Let $oldsymbol{L}$ denote the list of distinct atoms for these roots.
- Cycle through each term d_pA , where A is a atom. If A appears in list L, then multiply d_pA and each **related atom** term d_qB by x. Other terms appearing in y are unchanged.
- Repeat until the atom A in an arbitrary term d_pA of y does not appear in list L.^a The modified expression y is called the **corrected trial solution**.

^aThe number s of repeats for initial term d_pA equals the multiplicity of the root r which created atom A in list L.

Fixup rule IV

The rule predicts the corrected trial solution y without substituting it into the differential equation. This algebraic method uses the roots of the characteristic equation to create y.

- ullet Write down the roots of the characteristic equation as a list $oldsymbol{R}$, according to multiplicity.
- Let G denote a largest group of related atom terms in y with first atom A. If R contains a root r of multiplicity s, and an atom B for r is related to atom A, then multiply all terms of G by x^s . If no root in R has atom related to A, then no action is taken.
- ullet Repeat the previous step for all groups of related atoms in $oldsymbol{y}$. The modified expression $oldsymbol{y}$ is called the **corrected trial solution**.

