Examples: Solving *n***th Order Equations**

- Atoms
- L. Euler's Theorem
- The Atom List
- First Order. Solve 2y' + 5y = 0.
- ullet Second Order. Solve y''+2y'+y=0, y''+3y'+2y=0 and y''+2y'+5y=0.
- ullet Third Order. Solve y'''-y'=0 and y'''-y''=0.
- ullet Fourth Order. Solve $y^{iv}-y''=0$.

Atoms

An **atom** is a term with coefficient 1 obtained by taking the real and imaginary parts of

$$x^j e^{ax}(\cos cx + i\sin cx), \quad j = 0, 1, 2, \ldots,$$

where a and c represent real numbers and $c \ge 0$. By definition, zero is not an atom.

Theorem 1 (L. Euler)

The function $y = x^j e^{r_1 x}$ is a solution of a constant-coefficient linear homogeneous differential of the nth order if and only if $(r - r_1)^{j+1}$ divides the characteristic polynomial.

Euler's theorem is used to construct solutions of the nth order differential equation. The solutions so constructed are n distinct atoms, hence independent. Picard's theorem implies the list of atoms is a basis for the solution space.

The Atom List

1. If r_1 is a real root, then the atom list for r_1 begins with e^{r_1x} . The revised atom list is

$$e^{r_1 x}, x e^{r_1 x}, \ldots, x^{k-1} e^{r_1 x}$$

provided r_1 is a root of multiplicity k. This means that factor $(r - r_1)^k$ divides the characteristic polynomial, but factor $(r - r_1)^{k+1}$ does not.

2. If $r_1 = \alpha + i\beta$, with $\beta > 0$ and its conjugate $r_2 = \alpha - i\beta$ are roots of the characteristic equation, then the atom list for this pair of roots (both r_1 and r_2 counted) begins with

$$e^{\alpha x}\cos\beta x$$
, $e^{\alpha x}\sin\beta x$.

For a root of multiplicity k, these real atoms are multiplied by atoms $1, \ldots, x^{k-1}$ to obtain a list of 2k atoms

$$e^{\alpha x}\cos eta x, \ xe^{\alpha x}\cos eta x, \ \dots, \ x^{k-1}e^{\alpha x}\cos eta x, \ e^{\alpha x}\sin eta x, \ xe^{\alpha x}\sin eta x, \ \dots, \ x^{k-1}e^{\alpha x}\sin eta x.$$

1 Example (First Order) Solve 2y'+5y=0 by Euler's method, verifying $y_h=c_1e^{-5x/2}$.

Solution

2y' + 5y = 0 Given differential equation.

2r+5=0 Characteristic equation. Find it by replacement $oldsymbol{y}^{(n)}
ightarrow r^n$.

r = -5/2 Exactly one real root.

Atom = $e^{-5x/2}$ For a real root r, the atom is e^{rx} .

 $y_h = c_1 e^{-5x/2}$ The general solution y_h is written by multiplying the atom list by constants $c_1,\,c_2,\,\ldots$

2 Example (Second Order I) Solve y'' + 2y' + y = 0 by Euler's method, showing $y_h = c_1 e^{-x} + c_2 x e^{-x}$.

Solution

$$y'' + 2y' + y = 0$$

$$r^2 + 2r + 1 = 0$$

$$r = -1, -1$$

Atoms =
$$e^{-x}$$
, xe^{-x}

$$y_h = c_1 e^{-x} + c_2 x e^{-x}$$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Exactly two real roots.

For a double root r, the atom list is e^{rx} , xe^{rx} .

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots

3 Example (Second Order II) Solve y''+3y'+2y=0 by Euler's method, showing $y_h=c_1e^{-x}+c_2e^{-2x}$.

Solution

$$y'' + 3y' + 2y = 0$$

$$r^2 + 3r + 2 = 0$$

$$r = -1, -2$$

Atoms =
$$e^{-x}$$
, e^{-2x}

$$y_h = c_1 e^{-x} + c_2 e^{-2x}$$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization (r+2)(r+1)=0.

For a real root r of multiplicity one, the atom is e^{rx} .

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots

4 Example (Second Order III) Solve y''+2y'+5y=0 by Euler's method, showing $y_h=c_1e^{-x}\cos 2x+c_2xe^{-x}\sin 2x$.

Solution

$$y'' + 2y' + 5y = 0$$

 $r^2 + 2r + 5 = 0$

$$r = -1 + 2i, -1 - 2i$$

Atoms = $e^{-x} \cos 2x$, $e^{-x} \sin 2x$

$$y_h = c_1 e^{-x} \cos 2x + c_2 e^{-x} \sin 2x$$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization $(r+1)^2 + 4 = 0$.

For a complex root $r=\alpha+i\beta$ of multiplicity one, the atoms are $e^{\alpha x}\cos\beta x$ and $e^{\alpha x}\sin\beta x$.

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots

5 Example (Third Order I) Solve y'''-y'=0 by Euler's method, showing $y_h=c_1+c_2e^x+c_3e^{-x}$.

Solution

y''' - y' = 0 Given differential equation.

 $r^3-r=0$ Characteristic equation. Use $y^{(n)} o r^n$.

r=0,1,-1 Factorization r(r+1)(r-1)=0.

Atoms = $1, e^{-x}, e^x$ For a real root r of multiplicity one, the atom is e^{rx} .

 $y_h=c_1+c_2e^{-x}+c_3e^x$ The general solution y_h is written by multiplying the atom list by constants $c_1,\,c_2,\,c_3,\,\ldots$

6 Example (Third Order II) Solve y''' - y'' = 0 by Euler's method, showing $y_h = c_1 + c_2 x + c_3 e^x$.

Solution

y''' - y'' = 0 Given differential equation.

 $r^3-r^2=0$ Characteristic equation. Use $y^{(n)} o r^n$.

r=0,0,1 Factorization $r^2(r-1)=0$.

Atoms = $1, x, e^x$ For a real root r of multiplicity one, the atom is e^{rx} .

 $y_h=c_1+c_2x+c_3e^x$ The general solution y_h is written by multiplying the atom list by constants $c_1,\,c_2,\,c_3,\,\ldots$

7 Example (Fourth Order) Solve $y^{iv}-y''=0$ by Euler's method, showing $y_h=c_1+c_2x+c_3e^x+c_4e^{-x}$.

Solution

$$y^{iv}-y''=0$$
 Given differential equation.

$$r^4-r^2=0$$
 Characteristic equation. Use $y^{(n)} o r^n$.

$$r=0,0,1,-1$$
 Factorization $r^2(r-1)(r+1)=0$.

Atoms =
$$1, x, e^x, e^{-x}$$
 For a real root r of multiplicity one, the atom is e^{rx} . For a double root, the atoms are e^{rx} , xe^{rx} .

$$y_h=c_1+c_2x+c_3e^x+c_4e^{-x}$$
 The general solution y_h is written by multiplying the atom list by constants $c_1,\,c_2,$

 c_3, c_4, \ldots

