Example. Three Possibilities with Symbol k

Determine all values of the symbol k such that the system below has (1) No solution, (2) Infinitely many solutions or (3) A unique solution. Display all solutions found.

$$
\begin{aligned}
x+k y & =2 \\
(2-k) x+y & =3
\end{aligned}
$$

The solution of this problem involves construction of three frame sequences, the last frame of each resulting in one classification among the Three Possibilities: (1) No solution, (2) Unique solution, (3) Infinitely many solutions.

The plan, for each of the three possibilities, is to obtain a triangular system by application of swap, multiply and combination rules. Each step tries to increase the number of leading variables. The three possibilities are detected by (1) A signal equation " $0=1$," (2) One or more free variables, (3) Zero free variables.

A portion of the frame sequence is constructed, as follows.

$x+$	$k y$	$=$	2,
y	$=$	3.	

$x y$	$=$	2
0	$+[1+k(k-2)] y$	$=$
0		

| $x+$ | $k y$ | $=$ | 2 |
| ---: | ---: | ---: | ---: | ---: |
| $0+$ | $(k-1)^{2} y$ | $=$ | $2 k-1$. |

Frame 1.
Original system.
Frame 2. combo(1,2,k-2)

Frame 3. Simplify.

The three expected frame sequences share these initial frames. At this point, we identify the values of k that split off into the three possibilities.

There will be a signal equation if the second equation of Frame 3 has no variables, but the resulting equation is not " $0=0$." This happens exactly for $k=1$. The resulting signal equation is " $0=1$." We conclude that one of the three frame sequences terminates with the no solution case. This frame sequence corresponds to $k=1$.

Otherwise, $k \neq 1$. For these values of k, there are zero free variables, which implies a unique solution. A by-product of the analysis is that the infinitely many solutions case never occurs!

The conclusion: the three frame sequences reduce to two frame sequences. One sequence gives no solution and the other sequence gives a unique solution.

The three answers:
(1) There is no solution only for $k=1$.
(2) Infinitely many solutions never occur for any value of k.
(3) For $k \neq 1$, there is a unique solution

$$
\begin{aligned}
& x=2-k(2 k-1) /(k-1)^{2} \\
& y=(2 k-1) /(k-1)^{2} .
\end{aligned}
$$

