Applied Differential Equations 2250

Exam date: Tuesday, 11 March, 2008

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Frame sequences and the 3 possibilities)

Determine a, b such that the system has a unique solution, infinitely many solutions, or no solution:

$$A = \begin{pmatrix} 1 & 2 & 1 & 2a \\ 4 & 8 & 3 & 2+a \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & 2e \\ 0 & 2b-b & -1 & b-ba \\ 4 & 8 & 3 & 2+a \end{pmatrix} combo(1,2,-3)$$

$$\begin{pmatrix} 1 & 2 & 1 & 2e \\ 0 & 2b-b & -1 & b-ba \\ 0 & 0 & -1 & 2-7a \end{pmatrix} combo(1,3,-4)$$

$$\begin{pmatrix} 1 & 2 & 1 & 2e \\ 0 & 2b-b & 0 & b+e-2 \\ 0 & 0 & -1 & 2-7a \end{pmatrix} combo(3,2,-1)$$

- If b = 3, Tron 3 lead vans and rinight sol
 If b = 3 and a+1 = 0, Then signal eg and No sol.
 If b = 3 and a+1 = 0, Then one free van and 00 many sols

2. (vector spaces) Do all three parts.

(a) [20%] The vector space V is the set of all polynomials $p(x) = (1 + x^2)(a_0 + a_1x + a_2x^5 + a_3x^7)$. Find a subspace S of V of dimension 3 which contains $x^5 - x^9$ and display a basis for S. Don't justify anything.

(b) [40%] Let V be the vector space of all column vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and let S be the subset of V given

by the equations $x_1 + 2x_3 = 0$, $x_2 + x_3 = 0$, $x_2 = -x_3$. Prove or disprove that S is a subspace of V.

(c) [40%] Find a basis of 4-vectors for the subspace of \mathbb{R}^4 given by the system of equations

- Basis for $V = \{1+x^2, x+x^3, x^5+x^7, x^7+x^9\}$ Because $x^5-x^9=(x^5+x^7)-(x^7+x^9)=1.c.$ of basis elements Then S= span $\{1+x^2, x^5+x^7, x^7+x^9\}$ has dim = 3 and Contain; x^5-x^9
- (b) Define $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$. Par $S = \{ \vec{N} : A\vec{N} = \vec{0} \}$ is a subspace of V by The Kennel Nearon.

or disprove

3. (independence) Do only two of the three parts.

(a) [50%] Let
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 3 \end{pmatrix}$, State a test that decides independence or

dependence of the list of three vectors [20%]. Apply the stated test and report the result [30%].

(b) [50%] State the pivot theorem [20%]. Then extract from the list below a largest set of independent vectors [30%].

$$\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 2 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{d} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 5 \end{pmatrix}, \ \mathbf{e} = \begin{pmatrix} 3 \\ -2 \\ 0 \\ 4 \end{pmatrix},$$

(c) [50%] [If you did (a) and (b) already, then 100% has been attained: skip this one!]

Assume that 4×3 matrix D has exactly one non-pivot column. Prove that there exists an invertible

matrix E such that $ED = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- (a) u_1, u_2, u_3 are independent \Longrightarrow rank (any $(u_1, u_2, u_3) = 3$ $A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ $rank(A) = 2 \implies dependent$
- © Then D has 2 pivot columns. The result is false, because $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ has exactly one non-pivot col and Tref(D) = D.

Use this page to start your solution. Attach extra pages as needed, then staple.

4. (determinants and elementary matrices) Do both parts.

- (a) [50%] Assume given 3×3 matrices A, B. Suppose $BE_5E_4E_3 = E_2E_1A$ and E_1 , E_2 , E_3 , E_4 , E_5 are elementary matrices representing respectively a a combination, a multiply by 3, a swap, a multiply by 4 and a swap. Assume $\det(A) = 3$. Find $\det(2A(B^T)^{-1})$ [B^T is the transpose of B].
- (b) [50%] Let A, B and C be 4×4 matrices such that AB = BA and $C + 4AB = A^2 + 4B^2$. Suppose C is invertible and $\mathbf{rref}(C) = E_2E_1C$, where E_1 , E_2 are elementary combination matrices. Find the possible values of $\det(A 2B)$.

@
$$\det(2 A(B^{\dagger})^{-1}) = \det(2I) \det(A) \det(B^{\dagger})^{-1}$$

= $8 \det(A) \det(B^{-1})^{\top}$
= $8 \det(A) \det B^{-1}$
= $8 \det(A) \det B^{-1}$
= $8 \det(A) \det(B)$

 $\frac{\det(B) \det E_5 \det E_4 \det E_3}{\det(B) (-1) (4) (-1)} = \frac{13}{3} \cdot \frac{(1) \det(A)}{\det(B)}$ $\frac{\det(A)}{\det(B)} = \frac{(-1)(4)(-1)}{(3)(1)} = \frac{4}{3}$ $\frac{\det(A)}{\det(B)} = \frac{(-1)(4)(-1)}{(3)(1)} = \frac{13}{3}$

$$\det (2 A (B^{T})^{-1}) = 8 (\frac{4}{3}) = \frac{32}{3}$$

(b)
$$C = A^2 + 4B^2 - 4AB$$

 $C = (A-2B)(A-2B)$ because $AB = BA$
 $det C = det(A-2B)det(A-2B)$
 $det C = det(rref(C)) = \frac{1}{1 \cdot 1}$ because $rref(C) = I$

$$det(A-2B)^{2} = 1$$

 $det(A-2B) = \pm 1$

- 5. (inverses and Cramer's rule) Do all three parts.
 - (a) [20%] Determine all values of x for which A^{-1} exists: $A = \begin{pmatrix} 1 & x-1 & 1 \\ 3 & 2 & 0 \\ 2x & x & x^2 \end{pmatrix}$.
 - (b) [40%] Apply the adjugate formula for the inverse to find the value of the entry in row 3, column 4 of A^{-1} , given A below. Other methods are not acceptable.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0 & 1 \\ 2 & 2 & 2 & 2 \\ -1 & 0 & -1 & 1 \\ 1 & 2 & 0 & 2 \end{array}\right)$$

(c) [40%] Solve for x_3 in $A\mathbf{x} = \mathbf{b}$ by Cramer's rule. Other methods are not acceptable.

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 5 & 6 & 8 & 4 \\ 3 & 0 & 4 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 0 \end{pmatrix}.$$

- $det(A) = |(+1)| \frac{3^2}{2 \times x} + x^2(+1) | \frac{1}{3} \frac{x-1}{2} |$ $= -x + x^{2}(2-3x+3)$ $= -3x^{3}+5x^{2}-x$ $= -x (3x^{2}-5x+1)$
 - $\begin{array}{ccc} B = A^{-1} \\ B \left[3, 4 \right] = & \frac{\text{Cofactor}(A, 4, 3)}{\text{det}(A)} \end{array}$
- A' exists for $x\neq 0$ and $3x^2-5x+1\neq 0$ $[x \neq 5 \pm \sqrt{13}]$ Cofactor = $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ -1 & 0 & 1 \end{vmatrix}$ $(-1)^{4+3} = (-4)(-1) = 4$ B[3,4] = -2
- © $x_3 = \frac{\Delta_3}{\Delta}$ $\Delta = \begin{vmatrix} 1200 \\ 5684 \\ 3041 \end{vmatrix} = -4$ $\Delta_3 = \begin{vmatrix} 220 \\ 56-24 \\ 1000 \end{vmatrix} = (-1)(-4-12) = 16$ X2 = -4