y Introduction to Linear Algebra 2270-2
Midterm Exam 3 Spring 2007

Exam Date: Wednesday, 18 April 2007

Instructions. The exam is 50 minutes. Calculators are not allowed. Books and notes are not allowed.

1. (Kernel, Independence, Similarity) Complete two.
. . (—1)4
(a) [50%] Use the identity rref(A) = E1E; - -- B A to prove: If ker(A) = {0}, then det(A) = )
ml e mp
., my, are the multipliers for the elementary

where q is the number of elementary swap matrices and my, ..
multiply matrices, in the sequence Ey, ..., Ej.

(b) [50%)] Suppose the matrices A and B are 3 x 3. Prove or disprove:
ker(AB) = {0} implies ker(BA) = {0}.

(c) [50%] If you did (a) and (b), then stop, because 100% has been obtained. Otherwise continue.
Do there exist matrices 4 and B such that A is not similar to B but A® is similar to B*? Justify. Hint:

This problem comes from maple lab problem L2.3.
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2. (Abstract vector spaces, Linear transformations) Complete two.

Let W be the set of all infinite sequences of real numbers x = {2,}52. Define addition and scalar
multiplication for W by the usual rules in the textbook. Assume W is known to be a vector space.

(a) [50%] Let V be the subset of W defined by the relation limp .o zn = 0. Prove that V' is a subspace
of W.

(b) [50%] Let V be defined as in (a) above. Define T'(x) = {yn}7Zo on V by the relations yo = 0, y; =0,
Yn4a = Tp for n > 0. Show that 7' is a linear transformation from V to V.

(c) [50%] If you did (a) and (b), then stop with 100%. Otherwise continue.
Define T as in (b) above. Determine the kernel of T'.
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3. (Orthogonality, Gram-Schmidt) Complete two.
(a) [50%] Give an algebraic proof, depending only on inner product space properties, of the Cauchy-

Schwartz inequality Ju - v| < |Jul||]v]] in R™.

1 1 1 -1
(b) [50%] Find the orthogonal projection of ( 0 ) onto V = span { ( 1 ) , ( 0 ) , ( 1 ) }
0 1 -1 -1

(c) [50%] If you did (a) and (b), then stop with 100%. Otherwise continue.

4 5 0
Find the QR-factorizationof A= 0 0 -2 ) .
3

-5 0
(e) [50%)] If you did two already, then stop with 100%. Otherwise continue.
An n x n matrix A is said to to be orthogonal provided ||Ax| = ||x|| for all x. Prove that the product

of orthogonal matrices is orthogonal.

(f) [50%] If you did two already, then stop with 100%. Otherwise continue.
Find a non-invertible matrix A having two ) R-factorizations.
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3. (Orthogonality, Gram-Schmidt) Complete two.
(a) [50%] Give an algebraic proof, depending only on inner product space properties, of the Cauchy-
Schwartz inequality [u - v| < |lu]|]]v]] in R".

1 1 1 -1
(b) [50%)] Find the orthogonal projection of | 0 | onto V = span 1, 01, 1
0 1 -1 -1
(c) [50%)] If you did (a) and (b), then stop with 100%. Otherwise continue.
4 5 0
Find the QR-factorizationof A= | 0 0 -2
3 =5 0
(d} [60%)] If you did two already, then stop with 100%. Otherwise continue.
An n x n matrix A is said to to be orthogonal provided ||Ax|| = ||x|| for all x. Prove that the product

of orthogonal matrices is orthogonal.

(® [50%)] If you did two already, then stop with 100%. Otherwise continue.
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4. (Orthogonality and least squares) Complete both.
(a) [50%] Assume ker(4) = {0}. Prove that the least squares normal equation for an inconsistent

system Ax = b has a unique solution and display this solution.

(b) [50%] Prove the near point theorem: Given a vector X in R3 and a subspace V of R®, then v =
projy (x) is the nearest point in V' to x. This statement means that the minimum of ||x — v|| is attained

over all v in V at precisely the one point v = projy (x).
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5. (Determinants) Complete two.

(a) [50%] Given a 7 x 7 triangular matrix A, let B be obtained from A by a finite number of row swaps.
Report all possible values of det(B), then prove your statement.

(b) [50%] Find A~! by two methods: via the classical adjoint formula A~! = adj(A)/det(A), and the
frame sequence method C to rref(C), applied to €' = aug(A,I):

4 2 0
A=10 0 -2 |.
3 -2 0

(c) [50%] If you did (a) and (b), then stop with 100%. Otherwise continue.

Let 4 x 4 matrices A and B be given and assume B = E4E3E,FpA. The elementary matrices Ey, By, Es,
E, represent combo(1,3,-15), swap(1,4), mult(2, -1/4), mult(3,-5), respectively. Find det(2B%4),
given det(A4) = 5.
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