Introduction to Linear Algebra 2270-2
Revised Sample, Midterm Exam 2 Spring 2007
Exam Date: 28 March

Instructions. This exam is designed for 50 minutes. Calculators, books, notes and computers are not allowed.

1. *(Matrices, determinants and independence)* Do two parts.

 (a) Prove that the pivot columns of A form a basis for $\text{im}(A)$.

 (b) Suppose A and B are both $n \times m$ of rank m and $\text{rref}(A) = \text{rref}(B)$. Prove or give a counterexample: the column spaces of A and B are identical.

Start your solution on this page. Please staple together any additional pages for this problem.
2. (Kernel and similarity) Do two parts.

(a) Illustrate the relation \(\text{rref}(A) = E_k \cdots E_2 E_1 A \) by a frame sequence and explicit elementary matrices for the matrix

\[
A = \begin{pmatrix}
0 & 1 & 2 \\
1 & 1 & 0 \\
2 & 2 & 0
\end{pmatrix}.
\]

(b) Prove or disprove: \(\ker(\text{rref}(BA)) = \ker(A) \), for all invertible matrices \(B \).
3. (Independence and bases) Do two parts.
 (a) Let A be a 12×15 matrix. Suppose that, for any possible independent set v_1, \ldots, v_k, the set Av_1, \ldots, Av_k is independent. Prove or give a counterexample: $\ker(A) = \{0\}$.
 (b) Let V be the vector space of all polynomials $c_0 + c_1x + c_2x^2$ under function addition and scalar multiplication. Prove that $1 - x, 2x, (x - 1)^2$ form a basis of V.

Start your solution on this page. Please staple together any additional pages for this problem.
4. (Linear transformations) Do two parts.
 (a) Let L be a line through the origin in \mathbb{R}^3 with unit direction \mathbf{u}. Let T be a reflection through L. Define T precisely. Display its representation matrix A, i.e., $T(x) = Ax$.
 (b) Let T be a linear transformation from \mathbb{R}^n into \mathbb{R}^m. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the columns of I and let A be the matrix whose columns are $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)$. Prove that $T(x) = Ax$.

Start your solution on this page. Please staple together any additional pages for this problem.
5. (Vector spaces)
 (a) Show that the set of all 4×3 matrices A which have exactly one element equal to 1, and all other elements zero, form a basis for the vector space of all 4×3 matrices.

 (b) Let $S = \left\{ \begin{pmatrix} a & b \\ -a & 2b \end{pmatrix} : a, b \text{ real} \right\}$. Find a basis for S.

 (c) Let V be the vector space of all functions defined on the real line, using the usual definitions of function addition and scalar multiplication. Let S be the set of all polynomials of degree less than 5 (e.g., $x^4 \in V$ but $x^5 \notin V$) that have zero constant term. Prove that S is a subspace of V.

Start your solution on this page. Please staple together any additional pages for this problem.