Name. KEY

Applied Linear Algebra 2270-2 Midterm Exam 1 Wednesday, 14 Feb 2007

Instructions: This in-class exam is designed for 50 minutes. No tables, notes, books or calculators allowed.

- 1. (Inverse of a matrix) Supply details for two of these:
 - **a.** If A and B are $n \times n$ invertible, then $(AB)^{-1} = B^{-1}A^{-1}$.
 - **b**. Give an example of two matrices A and B, not necessarily square, such that AB = I but $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - **c.** Give an example of a 3×3 matrix A and a frame sequence starting at $C = \mathbf{aug}(A, I)$ which proves that A^{-1} does not exist.

(a) We show
$$C = AB$$
 and $D = B^{\prime}A^{\prime}$ satisfy $CD = DC = I$.

$$CD = ABB^{\prime}A^{\prime}$$

$$= AIA^{\prime}$$

$$= AA^{\prime}$$

$$= I$$

$$= I$$
(b) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

© (100|100)
$$A = (000)$$
. Sequence has length 1.
000|000|
A has an inverse \Rightarrow rref (aug(A,I)) = aug(I,B) and $B = A^{-1}$.
Since The last frame does not have I in left half, Then A^{-1} does not exist.

2. (Elementary Matrices) Let A be a 3×3 matrix. Let

$$\mathbf{rref}(A) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Assume $\mathbf{rref}(A)$ is obtained from A by the following sequential row operations: (1) Swap rows 1 and 2; (2) Add -3 times row 2 to row 3; (3) Add 2 times row 1 to row 2; (4) Multiply row 2 by 4.

- a. Write a matrix multiplication formula for $\mathbf{rref}(A)$ in terms of explicit elementary matrices and the matrix A. (80%)
- **b**. Find A. (20%)

(a)
$$\operatorname{rref}(A) = \begin{pmatrix} 100 \\ 040 \\ 001 \end{pmatrix} \begin{pmatrix} 100 \\ 210 \\ 001 \end{pmatrix} \begin{pmatrix} 100 \\ 070 \\ 0-31 \end{pmatrix} \begin{pmatrix} 010 \\ 001 \\ 001 \end{pmatrix} A$$

Name.

3. (RREF method)

Part I. If a non-homogeneous system has a unique solution, then what is the rank and nullity of the corresponding homogeneous system? [20%]

Part II. Let a, b and c denote constants and consider the system of equations

$$\begin{pmatrix} 1 & b-c & a \\ 1 & c & -a \\ 2 & b & a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -a \\ a \\ 0 \end{pmatrix}$$

a. Determine those values of a, b and c such that the system has a unique solution. (40%) $2c - b \neq 0$, $a \neq 0$

b. Determine those values of a, b and c such that the system has no solution. (20%) 2C-b=0, a +0

c. Determine those values of a, b and c such that the system has infinitely many a = 0 [value of 20-6 can be any Tring] solutions. (20%)

To save time, don't attempt to solve the equations or to produce a complete frame sequence.

rank = # vars, nullity = 0

parts a,b,c listed below.

a |-a| (a) 2c-b+0 and a+0 => 3 |ead vars

unique sol

$$\begin{pmatrix}
1 & b-c & a & | -a \\
0 & 2c-b & -2a & | 2a \\
0 & 0 & a & | 0
\end{pmatrix}$$

case 20-b=0 $\begin{pmatrix} 1 & b-c & a & -a \\ 0 & 2c-b & -2a & 2a \\ 0 & -b+2c & -a & 2a \end{pmatrix} \qquad \begin{pmatrix} 1 & c & a & -a \\ 0 & 0 & -2a & 2a \\ 0 & 0 & a & 0 \end{pmatrix}$

$$\begin{pmatrix}
1 & C & a & | -a \\
0 & 0 & a & | -a
\end{pmatrix}$$

a = 0 and 20-b=0 due to signal eq "0=a"

© Sequence 1 has a row of zeros for a=0 Sequence 2 has a row of zeros for a=0 In both cases, 1 pages. 00 - many sols.

KEY

4. (Matrix algebra)

Do two of these:

- **a.** Find all 2×2 matrices A such that $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A = A \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$.
- **b**. Let A be a 3×2 matrix and B a 2×3 matrix. Explain using matrix algebra and the three possibilities why the 3×3 matrix C = AB cannot be invertible.
- c. Prove for 2×2 matrices A, B, C that A(B+C) = AB + AC. Please use only the definition of matrix addition, scalar multiply and matrix multiply.

Suppose C is invertible. Because
$$rank(B) \le 2$$
, There is a nonzero \vec{x} s.t. $B\vec{x} = \vec{0}$. Then $AB\vec{x} = C\vec{x}$

$$A\vec{0} = C\vec{x}$$

$$\vec{0} = C\vec{x}$$

$$\vec{0} = \vec{x}$$

$$\vec{0} = \vec{x}$$

$$\vec{0} = \vec{x}$$

$$\vec{0} = \vec{x}$$

$$\vec{0} = \vec{x}$$
a contradiction.

I dea of proof: Let $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$, similar for B,C. Then $A(B+C) = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} b_1+c_1 & b_2+c_2 \\ b_3+c_3 & b_4+c_4 \end{pmatrix} = \begin{pmatrix} a_1b_1+a_1c_1 + a_2b_3+a_2c_3 \\ a_1b_1+a_2c_3 \end{pmatrix}$

Expand AB+AC and get The same matrix.

KEY

5. (Geometry and linear transformations)

Part I. Classify $T(\mathbf{x}) = A\mathbf{x}$ geometrically as scaling, projection onto line L, reflection in line L, pure rotation by angle θ , rotation composed with scaling, horizontal shear, vertical shear. Define L and θ where applicable. [60%]

a.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 for $\theta = 90^{\circ}$; $A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\theta = 90^{\circ}$
b. $A = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ Horiz. Shear

c.
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \sqrt{2} \begin{pmatrix} \cos \phi - \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
, $\theta = 45^{\circ}$ rotate cc 45° , scale $\sqrt{2}$

d.
$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix} = \begin{pmatrix} a & b \\ b - a \end{pmatrix}, \quad a^2 + b^2 = 1$$
 or Thonormal cols
$$Reflection \ \dot{m} \times -(2+\sqrt{3}) y = 0$$

Part II. Give details. [40%]

e. Define vertical and horizontal shear.
$$T(\bar{x}) = A\bar{x}$$

$$T_A = (x_1) + (x_2) + (x_3)$$

e. Define vertical and horizontal shear.
$$T(\vec{x}) = A\vec{x}$$

$$T(\vec{x}) = A\vec{x}$$
f. Display the matrix A of a projection onto a line L in \mathbb{R}^3 .
$$T(\vec{x}) = (\vec{x} \cdot \vec{u}) \vec{u} = A\vec{x} \implies A = any(u, \vec{u}, u, \vec{u}, u, \vec{u})$$

g. Define reflection in a line
$$L$$
 in \mathbb{R}^2 .

$$T(\vec{x}) = 2 (x \cdot \vec{u}) \vec{u} - \vec{x} .$$