
Name Class Time

Math 2270 Maple Project 2: Linear Algebra
February 2007

Due date: See the internet due dates. Maple lab 2 has problems L2.1, L2.2, L2.3.

References: Code in maple appears in 2270mapleL2-S2007.txt at URL http://www.math.utah.edu/~gustafso/.
This document: 2270mapleL2-S2007.pdf.

Problem L2.1. (Matrix Algebra)

Define A =





1 2 3
4 5 6
7 8 9



, B =





2 1 0
1 2 1
0 1 2



, v =





1
2
3



 and w =





−1
4
1



. Create a worksheet in maple which

states this problem in text, then defines the four objects. The worksheet should contain text, maple code and displays.
Continue with this worksheet to answer (1)–(7) below. Submit problem L2.1 as a worksheet printed on 8.5 by 11 inch
paper. See Example 1 for maple commands.

(1) Compute AB and BA. Are they the same?

(2) Compute A + B and B + A. Are they the same?

(3) Let C = A + B. Compare C2 to A2 + 2AB + B2. Explain why they are different.

(4) Compute transposes C1 = (AB)T , C2 = AT and C3 = BT . Find an equation for C1 in terms of C2 and C3. Verify
the equation.

(5) Solve for X in BX = v by three different methods.

(6) Solve AY = v for Y. Do an answer check.

(7) Solve AZ = w. Explain your answer using rref theory.

Problem L2.2. (Row space)

Let A =









1 1 1 2 6
2 3 −2 1 −3
0 1 −4 −3 −15
1 2 −3 −1 −9









. Find two different bases for the row space of A, using the following three methods.

1. The method of Example 2, below.

2. The maple command rowspace(A) .

3. The rref -method: select rows from rref(A).

Two of the methods produce exactly the same basis. Verify that the two bases B1 = {v1,v2} and B2 = {w1,w2} are
equivalent. This means that each vector in B1 is a linear combination of the vectors in B2, and conversely, that each
vector in B2 is a linear combination of the vectors in B1.

Problem L2.3. (Matrix Equations)

Let A =





10 13 5
−5 −8 −5
−3 −3 2



, T =





2 0 0
0 −3 0
0 0 5



. Let P denote a 3 × 3 matrix. Assume the following result:

Lemma 1. The equality AP = PT holds if and only if the columns v1, v2, v3 of P satisfy Av1 = 2v1,
Av2 = −3v2, Av3 = 5v3. [proved after Example 4]

(a) Determine three specific columns for P such that det(P ) 6= 0 and AP = PT . Infinitely many answers are possible.
See Example 4 for the maple method that determines a column of P .

(b) After reporting the three columns, check the answer by computing AP − PT (it should be zero) and det(P ) (it
should be nonzero).

Staple this page on top of the maple work sheets. Examples and theory on the next page . . .



Example 1. Let A =





1 2 3
2 −1 1
3 0 −1



 and b =





9
8
3



. Create a maple work sheet. Define and display matrix A

and vector b. Then compute

(1) The inverse of A.

(2) The augmented matrix C = aug(A,b).

(3) The reduced row echelon form R = rref (C).

(4) The column X of R which solves AX = b.

(5) The matrix A3.

(6) The transpose of A.

(7) The matrix A − 3A2.

(8) The solution X of AX = b by two methods different than (4).

Solution: A lab instructor can help you to create a blank work sheet in maple, enter code and print the work sheet.
The code to be entered appears below. To get help, enter ?linalg into a worksheet, then select commands that match

ones below.

with(linalg):

A:=matrix([[1,2,3],[2,-1,1],[3,0,-1]]);

b:=vector([9,8,3]);

print("(1)"); inverse(A);

print("(2)"); C:=augment(A,b);

print("(3)"); R:=rref(C);

print("(4)"); X:=col(R,4);

print("(5)"); evalm(A^3);

print("(6)"); transpose(A);

print("(7)"); evalm(A-3*(A^2));

print("(8)"); X:=linsolve(A,b); X:=evalm(inverse(A) &* b);

Example 2. Let A =









1 1 1 2 6
2 3 −2 1 −3
3 5 −5 1 −8
4 3 8 2 3









.

(1) Find a basis for the column space of A.

(2) Find a basis for the row space of A.

(3) Find a basis for the nullspace of A.

(4) Find rank(A) and nullity(A).

(5) Find the dimensions of the nullspace, row space and column space of A.

Solution: The theory applied: The columns of B corresponding to the leading ones in rref(B) are independent and

form a basis for the column space of B. These columns are called the pivot columns of B. Results for the row space
can be obtained by applying the above theory to the transpose of the matrix.

The maple code which applies is

with(linalg):

A:=matrix([[ 1, 1, 1, 2, 6],

[ 2, 3,-2, 1,-3],

[ 3, 5,-5, 1,-8],

[ 4, 3, 8, 2, 3]]);

print("(1)"); C:=rref(A); # leading ones in columns 1,2,4

BASIScolumnspace=col(A,1),col(A,2),col(A,4);
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print("(2)"); F:=rref(transpose(A)); # leading ones in columns 1,2,3

BASISrowspace=row(A,1),row(A,2),row(A,3);

print("(3)"); nullspace(A); linsolve(A,vector([0,0,0,0]));

print("(4)"); RANK=rank(A); NULLITY=coldim(A)-rank(A);

print("(5)"); DIMnullspace=coldim(A)-rank(A); DIMrowspace=rank(A);

DIMcolumnspace=rank(A);

Example 3. Let A =









1 1 1 2 6
2 3 −2 1 −3
3 5 −5 1 −8
4 3 8 2 3









. Verify that the following column space bases of A are equivalent.

v1 =









1
2
3
4









, v2 =









1
3
5
3









, v3 =









2
1
1
2









,

w1 =









1
0
0

−3









, w2 =









0
1
0

17









, w3 =









0
0
1

−9









.

Solution: We will use this result:

Lemma 2. Bases {v1,v2,v3} and {w1,w2,w3} are equivalent bases if and only if the augmented matrices F =
aug(v1,v2,v3), G = aug(w1,w2,w3) and H = aug(F, G) satisfy the rank condition rank(F ) = rank(G) = rank(H) =
3.

The proof appears below.

The maple code which applies is

with(linalg):

A:=matrix([[ 1, 1, 1, 2, 6],

[ 2, 3,-2, 1,-3],

[ 3, 5,-5, 1,-8],

[ 4, 3, 8, 2, 3]]);

v1:=vector([1,2,3,4]); v2:=vector([1,3,5,3]); v3:=vector([2,1,1,2]);

w1:=vector([1, 0, 0, -3]); w2:=vector([0, 1, 0, 17]); w3:=vector([0, 0, 1, -9]);

F:=augment(v1,v2,v3);

G:=augment(w1,w2,w3);

H:=augment(F,G);

rank(F); rank(G); rank(H);

We remark that the two bases in the example were discovered from the maple code

rref(A); # pivot cols 1,2,4

v1:=col(A,1); v2:=col(A,2); v3:=col(A,4);

B:=rref(transpose(A)); # pivot cols 1,2,3

w1:=row(B,1); w2:=row(B,2); w3:=row(B,3);

Proof of Lemma 2.

Proof: The test appears in the online pdf documents at the course web site. Let’s justify the test here, independently,
showing only half the proof: rank(F ) = rank(G) = rank(H) = n implies the bases are equivalent.

The equation rref(F ) = EF holds for E a product of elementary matrices. Then EH has to have n lead variables,
because of F in the first n columns, and the remaining rows are zero, because rank(H) = n. Therefore, the first n

columns of H are the pivot columns of H . The non-pivots of H are just the columns of G, and by the pivot theory, they
are linear combinations of the pivot columns, namely, the columns of F . We can multiply H by a permutation matrix
P which effectively swaps F and G. Already, HP has the n independent columns of F , so its rank is at least n. But its
other columns are linear combinations of these columns, so the rank is exactly n. Now we argue by symmetry that the
columns of F are linear combinations of the columns of G, using HP instead of H .

The proof is complete.
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Example 4. Let A =





1 2 3
2 −1 1
3 0 0



. Solve the equation Ax = −3x for x.

Solution. Let λ = −3. The idea is to write the equation Ax = λx as a homogeneous problem (A − λI)x = 0. Define
B = A− λI. The homogeneous equation Bx = 0 always has the solution x = 0. It has a nonzero solution x if and only
if there are infinitely many solutions, in which case the solutions are found by a frame sequence to rref (B). The maple

details appear below. The basis vectors for Bx = 0 are obtained in the usual way, by taking partial derivatives on the
general solution with respect to the symbols t1, t2, . . . . In this case, there is just one basis vector





−2
1
2



 .

with(linalg):

A:=matrix([[1,2,3],[2,-1,1],[3,0,0]]);

B:=evalm(A-(-3)*diag(1,1,1));

linsolve(B,vector([0,0,0]));

# ans: t_1*vector([-2,1,2])

# Basis == partial on t_1 == vector([-2,1,2])

Proof of Lemma 1. Define r1 = 2, r2 = −3, r3 = 5. Assume AP = PT , P = aug(v1,v2,v3) and T = diag(r1, r2, r3).
The definition of matrix multiplication implies that AP = aug(Av1, Av2, Av3) and PT = aug(r1v1, r2v2, r3v3). Then
AP = PT holds if and only if the columns of the two matrices match, which is equivalent to the three equations
Av1 = r1v1, Av2 = r2v2, Av3 = r3v3. The proof is complete.

End of Maple Lab 2 Linear Algebra.
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