Math 2250
Earthquake project
November 2002
Name \qquad Class Time
Project 3. Solve problems 3.1 to 3.6. The problem headers:

```
        PROBLEM 3.1. BUILDING MODEL FOR AN EARTHQUAKE.
        PROBLEM 3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS.
        PROBLEM 3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.
        PROBLEM 3.4. PRACTICAL RESONANCE.
        PROBLEM 3.5. EARTHQUAKE DAMAGE.
        PROBLEM 3.6. SIX FLOORS.
    > with(linalg):
```


3.1. BUILDING MODEL FOR AN EARTHQUAKE.

Refer to the textbook of Edwards-Penney, section 7.4, page 437. Consider a building with 7 floors.
Let the mass in slugs of each story be $m=1000.0$ and let the spring constant be $k=10000 \mathrm{lbs} /$ foot. Define the 7 by 7 mass matrix M and Hooke's matrix K for this system and convert $M x^{\prime \prime}=K x$ into the system $x^{\prime \prime}=A x$ where A is defined by textbook equation (1), page 437 .

PROBLEM 3.1

Find the eigenvalues of the matrix A to six digits, using the Maple command eigenvals(A). Check that that all seven eigenvalues are negative by using maple's eigenvals command. \# Sample Maple code for a model with 4 floors. \# Use maple help to learn about evalf and eigenvals. with(linalg):
$\mathrm{A}:=\operatorname{matrix}([[-20,10,0,0],[10,-20,10,0],[0,10,-20,10],[0,0,10,-10]]) ;$
evalf(eigenvals(A));
> \# Problem 3.1

3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS.

Refer to figure 7.4.17, page 437.
PROBLEM 3.2.
Find the natural angular frequencies $\omega=\sqrt{-\lambda}$ for the seven story building and also the corresponding periods $2 \pi / \omega$, accurate to six digits. Display the answers in a table. The answers appear in Figure 7.4.17, page 437.
\# Sample code for a 4 x 3 table.
\# Use maple help to learn about nops and printf.
ev:=[-10,-1.206147582,-35.32088886,-23.47296354]: $\mathrm{n}:=\mathrm{nops}(\mathrm{ev})$:
Omega:=lambda -> sqrt(-lambda):
format:="\%10.6f \%10.6f $\% 10.6 f \backslash n "$:
$\operatorname{seq}\left(\operatorname{printf}\left(\right.\right.$ format, $\left.\left.\mathrm{ev}[\mathrm{i}], \mathrm{Omega}(\mathrm{ev}[\mathrm{i}]), 2^{*} \operatorname{evalf}(\mathrm{Pi}) / \operatorname{Omega}(\mathrm{ev}[\mathrm{i}])\right), \mathrm{i}=1 . . \mathrm{n}\right)$;
> \# Problem 3.2

3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.

Consider the forced equation $x^{\prime}=A x+\cos (w t) b$ where b is a constant vector. The earthquake's ground vibration is accounted for by the extra term $\cos (w t) b$, which has period $T=2 \pi / w$. The solution $\mathrm{x}(\mathrm{t})$ is the 7 -vector of excursions from equilibrium of the corresponding 7 floors. Sought here is not the general solution, which certainly contains transient terms, but rather the steady-state periodic solution, which is known from the theory to have the form $x(t)=\cos (w t) c$ for some vector c that depends only on A and b.

PROBLEM 3.3.

Define b: $=0.25 * \mathrm{w} * \mathrm{w} * \operatorname{vector}([1,1,1,1,1,1,1])$: in Maple and find the vector c in the undetermined coefficients solution $x(t)=\cos (w t) c$. Vector c depends on w. As outlined in the textbook, vector c can be found by solving the linear algebra problem $-w^{2} c=A c+b$; see page 433. Don't print c, as it is too complex; instead, print c[1] as an illustration.
\# Sample code for defining b and A , then solving for c in the 4 -floor case.
\# See maple help to learn about vector and linsolve.
with(linalg):
$\mathrm{w}:={ }^{\prime} \mathrm{w}$ ': $\mathrm{u}:=\mathrm{w}^{*} \mathrm{w}: \mathrm{b}:=0.25^{*} \mathrm{u}^{*} \operatorname{vector}([1,1,1,1])$:
$\mathrm{Au}:=\operatorname{matrix}([[-20+\mathrm{u}, 10,0,0],[10,-20+\mathrm{u}, 10,0],[0,10,-20+\mathrm{u}, 10],[0,0,10,-10+\mathrm{u}]])$;
$\mathrm{c}:=\operatorname{linsolve}(\mathrm{Au},-\mathrm{b})$:
evalf(c[1],2);
> \# PROBLEM 3.3

3.4 PRACTICAL RESONANCE.

Consider the forced equation $x^{\prime}=A x+\cos (w t) b$ of 3.3 above. Practical resonance can occur if a component of $x(t)$ has large amplitude compared to the vector norm of b. For example, an earthquake might cause a small 3-inch excursion on level ground, but the building's floors might have 50-inch excursions, enough to destroy the building.

PROBLEM 3.4.
Let $\operatorname{Max}(\mathrm{c})$ denote the maximum modulus of the components of vector c. Plot $g(T)=\operatorname{Max}(c(w))$ with $w=2 \pi / T$ for periods $T=0$ to $T=6$, ordinates $M a x=0$ to $M a x=10$, the vector $c(w)$ being the answer produced in 3.3 above. Compare your figure to the textbook Figure 7.4.18, page 438. Adjust parameter numpoints in the plot command as needed.
\# Sample maple code to define the function $\operatorname{Max}(\mathrm{c})$, 4-floor building.
\# Use maple help to learn about norm, vector, subs and linsolve.
with(linalg):
$\mathrm{w}:=$ 'w': Max:= c -> norm(c,infinity); $\mathrm{u}:=\mathrm{w}^{*} \mathrm{w}$:
$\mathrm{b}:=0.25{ }^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector $([1,1,1,1])$:
$\mathrm{Au}:=\operatorname{matrix}([[-20+\mathrm{u}, 10,0,0],[10,-20+\mathrm{u}, 10,0],[0,10,-20+\mathrm{u}, 10],[0,0,10,-10+\mathrm{u}]])$;
$\mathrm{C}:=\mathrm{ww}->\operatorname{subs}(\mathrm{w}=\mathrm{ww}$, linsolve $(\mathrm{Au},-\mathrm{b}))$:
$\operatorname{plot}\left(\operatorname{Max}\left(\mathrm{C}\left(2^{*} \mathrm{Pi} / \mathrm{r}\right)\right), \mathrm{r}=0 . .6,0 . .10\right.$, numpoints $\left.=150\right)$;
> \# PROBLEM 3.4. WARNING: Save your file often!!!

3.5. EARTHQUAKE DAMAGE.

The maximum amplitude plot of 3.4 can be used to detect the likelihood of earthquake damage for a given ground vibration of period T. A ground vibration $(1 / 4) \cos (w t), T=2 \pi / w$, will be assumed, as in 3.4.

PROBLEM 3.5.
(a) Replot the amplitudes in 3.4 for periods 1.14 to 4 and amplitudes 5 to 10 . There will be four spikes.
(b) Create four zoom-in plots, one for each spike, choosing a T-interval that shows the full spike.
(c) Determine from the four zoom-in plots approximate intervals for the period T such that some floor in the building will undergo excursions from equilibrium in excess of 5 feet. Adjust parameter numpoints in the plot command as needed.
\# Example: Zoom-in on a spike for amplitudes 5 feet to 10 feet, periods 1.97 to 2.01 .
with(linalg): w:='w': Max:= c $->$ norm(c,infinity); $\mathrm{u}:=\mathrm{w}^{*} \mathrm{w}$:
$\mathrm{Au}:=\operatorname{matrix}([[-20+\mathrm{u}, 10,0,0],[10,-20+\mathrm{u}, 10,0],[0,10,-20+\mathrm{u}, 10],[0,0,10,-10+\mathrm{u}]])$;
$\mathrm{b}:=0.25{ }^{*} \mathrm{w}^{*}$ w ${ }^{*}$ vector $([1,1,1,1])$:
$\mathrm{C}:=\mathrm{ww}->\operatorname{subs}(\mathrm{w}=\mathrm{ww}, \operatorname{linsolve}(\mathrm{Au},-\mathrm{b}))$:
$\operatorname{plot}\left(\operatorname{Max}\left(\mathrm{C}\left(2^{*} \mathrm{Pi} / \mathrm{r}\right)\right), \mathrm{r}=1.97 . .2,01,5 . .10\right.$, numpoints $\left.=150\right)$;
$>$ \# PROBLEM 3.5. WARNING: Save your file often!!
> \#(a) Plot four spikes on separate graphs
$>$ \#(b) Plot four zoom-in graphs.
> \#(c) Print period ranges.

3.6. SIX FLOORS.

Consider a building with six floors each weighing 50 tons. Assume each floor corresponds to a restoring Hooke's force with constant $k=5$ tons/foot. Assume that ground vibrations from the earthquake are modeled by $(1 / 4) \cos (w t)$ with period $T=2 \pi / w$ (same as the 7 -floor model above).

PROBLEM 3.6.
Model the 6 -floor problem in Maple. Plot the maximum amplitudes against the period 0 to 6 and amplitude 4 to 10. Determine from the graphic the period ranges which cause the amplitude plot to spike above 4 feet. Sanity check: $m=3125$, and the 6×6 matrix contains fraction $16 / 5$. There are five spikes.
> \# PROBLEM 3.6. WARING: Save your file often!!
$>$ \# Define k, m and the $6 x 6$ matrix A.
> \# Amplitude plot for $\mathrm{T}=0 . \mathrm{C}, \mathrm{C}=4 . .10$
> \# Plot five zoom-in graphs
> \# From the graphics, five T-ranges give amplitude \# spikes above 4 feet. These are determined
by left \# mouse-clicks on the graph, so they are approximate values only.

