Differential Equations Preliminary Examination

Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

August 2002

Instructions: The examination consists of two parts. Part A consists of exer-
cises concerning Ordinary differential Equations and Part B consists of exercises
concerning Partial Differential Equations.

To obtain full credit, please complete three exercises from part A and three
exercises from part B, a total of six (6) exercises. All exercises are equally
weighted and partial credit applies to each. A passing score is 60% of the total
possible score.

Sound and detailed solutions are expected, but bear in mind that too many
details are time-consuming. Judgement of what is essential will be an important
factor in determining the final score.

Part A
Ordinary Differential Equations
Do three (3) exercises from Part A for full credit.

Exercise A-1. Consider the initial value problem

a' = f(t7 l‘), l‘(to) = To

on the set X: [t —ty| < a, |z — zo| < b. Below, outline the proof means a sequence



of statements and lemmas and very brief details. In the outlines, you may freely use
the statement and details of proof from the Picard—Lindel6f existence and uniqueness
theorem, which says that there exists a unique solution z(t¢) defined on the interval
|t —to] < o =min(a,b/m), m = max{|f(t,z)| : (¢t,z) € X}, provided f satisfies some
special conditions. Select with a check—mark and solve either A-1.1 or A-1.1I:

I:l A-1.I. Let f(¢,z) be measurable in ¢ for each fixed z, continuous in z for fixed ¢
a.e. and for some m € L!(ty—a,to+a), |f(t,7)| < m(t) whenerever (t,z) € X. Outline
the proof of Carathéodory’s existence theorem: There exists an absolutely continuous
function z(t) defined on an interval |t —to| < h with h < a such that z/(t) = f(t,z(t))
a.e., and z(tg) = xo.

I:l A-1.1II. Assume that f is continuous on X. Outline the proof of the Peano
existence theorem: There exists for some h > 0 at least one solution z(t) defined on
the interval |t — to| < h.

Solution:

A-1.T: It will be shown that the initial value problem has a solution z(t)
continuously differentiable on J = {t : [t — to| < a} for some a < a, to be
determined later on, by an application of the Schauder fixed point theorem.
Construct Tx = xg + ftz f(r,z(r))dr as in the Picard proof. Let M =
{z(t) € C(J) : |z(t) — mo|] < b}. Let E be the Banach space C(J) with
|lz|| = max{|z(t)| : ¢t € J}. The set M is closed, bounded and convex.
The Schauder fixed point theorem will be applied to the operator T, giving
a solution z(t) continuous on |t — 9| < a. The solution z(¢) has by virtue
of the integral equation additional smoothness, hence it is a continuously
differentiable solution of the initial value problem.

Three lemmas have to be established, to complete the proof.
Lemma. The mapping T is continuous on M.

Details: The composite ¢ — f(t,z(t)) is proved measurable by considera-
tion of characteristic functions of intervals first, then simple functions, then
measurable functions. Lebesgue’s dominated convergence theorem applies to
prove the continuity of 7.

Lemma. The mapping T" maps M into M.

Details: The domain measure 2« for interval J = {t: |t —ty| < a} is reduced
until [, m(r)dr <b. Then |Tx(t) —xo| < [, |f(r,z(r))|dr < [, m(r)dr <b
proves that 7" maps M into M.

Lemma. If {z,} is a bounded sequence in M, then {Tz,} is uniform-
ly bounded in E and it satifies the equicontinuity inequality ||Tz,(t1) —

Tzn(ta)| < ‘fff m(r)dr|, hence it has a norm-convergent subsequence.

Details: From above, | Tz, — zo|| < b, so the sequence is E-bounded, and
by the equicontinuity inequality, it is equicontinuous. Apply the Arzela-Ascoli
theorem to the sequence.




A-1.II: It will be shown that the initial value problem has a solution z(¢)
continuously differentiable on J = {t : |t — t9| < a} by an application of the
Schauder fixed point theorem. Construct Tz = ¢ + ftto f(r,z(r)) dr as in
the Picard proof. Let M = {z(t) € C(J) : |z(t) — zo| < b}. Let E be the
Banach space C(J) with ||z|| = max{|z(t)| : |t — to|] < a}. The set M is
closed, bounded and convex. The Schauder fixed point theorem will be applied
to the operator T, giving a solution z(t) continuous on [t — ty| < a. This
solution has by virtue of the integral equation additional smoothness, hence
it is a solution of the initial value problem. The details of proof requires the
following lemmas.

Lemma. T maps M into M
Details: |Tz(t) — zo| < ‘ffo |f(r,a;(7“))|dr‘ < am < b. This work duplicates
the Picard proof, and hence the details could be omitted.

Lemma. The operator 7" is continuous on M, that is, lim,_, ||z, — || =0
with z,, € M and z € M implies lim,, , ||Tz, — Tz| = 0.

Details: Apply Lebesgue’s dominated convergence theorem.

Lemma. If {z,} is a bounded sequence in M, then {Txz,} is uniformly
bounded and satifies the equicontinuity inequality ||T'z,(t1) — Tz, (t2)] <
m|t1 — t2|, hence it has a norm-convergent subsequence.

Details: The inequality follows by repeating the inequality steps used to prove
T maps M into M. Apply the Arzela-Ascoli theorem.

Exercise A-2. Assume that the eigenvalues of a real n x n matrix A have negative
real part. Select with a check—mark and solve either A-2.1 or A-2.1I:

[ ] A2l

(a) Prove that positive constants M and « exist such that for all z € R™ and ¢t > 0
le*z|| < Mljz]le~*.

(b) Prove that the zero solution of v’ = Au is asymptotically stable.

I:l A-2.11. Prove that for h(t) continuous and T-periodic, the equation ' = Au+ h(t)
has a unique T-periodic solution ().

Solution:

A-2.1I(a): Using e4t = Pe/*P~! for real Jordan form J = P7'AP, it
suffices to prove the inequality for A a real Jordan form. Each Jordan block B
corresponds to a block eB? in the exponential. Write eBt = ¢Re(WteCt where
C is a Jordan block with purely complex eigenvalue Zm()). While e may
contain polynomial terms, the negative exponential factor e®e(Mt implies the
desired inequality, by choosing a such that Re()\) < —a < O for all eigenvalues
A. In the development of this proof, the following lemmas are used.

Lemma. [Az| < | Allz] where [A|2 = S, $7 |ai; 2.




Lemma. lim;_,o, P(t)e"* = 0 for any polynomial P.

A-2.1(b): Solutions of u' = Au already exist for ¢ > 0, therefore the issue
is limit zero at infinity for any nonzero solution. Part (a) implies that |u(t)| =

‘eAtu(O)‘ < M|u(0)|e=®*, hence the result is proved.

A-2.11: First, the uniqueness. Let ug(t) be a T-periodic solution. Then
u(t) = e?c + ug(t) is the general solution; here ¢ is a constant vector. It
follows that the difference z(t) = ug(t) — u1(t) of T-periodic solutions ug and
uy satisfies z(t) = e4'd for some constant vector d. Because lim |z(t)| = 0
at t = oo, the T-periodicity of z(t) implies z(¢t) = 0. Hence up = u; and the
periodic solution is unique.

Existence of the T-periodic solution will be proved by finding an initial value
u(0) such that u(t) satisfies the periodicity requirement u(0) = w(7T'). The
T-periodic extension of u(t) to (—o0, 00) will then be of class C?, it will satisfy
the differential equation and hence it will be the desired T-periodic solution.

The requirement u(0) = u(T) is translated via the variation of parameters
formula into the relation

_ AT r A(T-s)
w(0) = eATw(0) + / AT=5)p(5) ds.
0

The matrix I — eAT has determinant equal to the product of its eigenvalues
p = 1— e, which are nonzero due to Re(\) < 0. Invertibility of I — eAT
therefore implies that u(0) exists such that u(0) = w(7T), and the proof is
complete.

Exercise A-3. Let the system z' = f(z) define a C' flow ¢; on the open set E
contained in R™. Prove that the positive limit set ['"(v) of a trajectory z(t) with
z(0) = v is closed. Then, select with a check-mark and solve either A-3.I or
A-3.11:

I:l A-3.1. Consider the autonomous planar dynamical system
&' =6z —2zy — 622, ' = —Ty+ 2zy — >

(a) Compute the four rest points (=equilibrium or stationary points) of the system
and the linearization about each rest point.

(b) Make a table in which each row contains a rest point, the classification stable or
unstable, and the geometric classification node, spiral, center or hyperbolic point.

(c) Sketch the phase diagram showing the rest points and the local behavior of solution
curves (rough and brief!).

I:l A-3.IL Let 72 = 22 + 92, w = (r2 — 1)(r? — 4) and consider the planar system
¥ =—y+zw,y =z+yw (r' = rw, " =1 in polar coordinates). Apply the Poincaré-
Bendixson theorem to prove that r = 1 and r = 2 are limit cycles (a periodic orbit v
with v =T'"(v) or v = I'"(v) for nearby v).



Solution:

['*(v) is closed: The set 't (v) is the set of all limit points lim, oo z(t,)
where t,, > 0, lim,,_,o t, = 0o and z(t) is the unique solution of 2/ = f(z),
z(0) = v. Let 2y be a limit point of the set. Then zy = lim,_, =, where
xp, belongs to Tt (v). Write z,, = limg_, o Z(tx) where limg_, oo £, = 0.
Choose s1 = t11. Inductively, for each n > 1, choose s, = t, with k = k(n)
such that t,x > sp—1 and |z, — z(tpk)| < 1/n. Then zo = limy o0 T =
limy, o0 2(8n) + limy s o0(zn — 2(8,)) = lim, 00 2(s,), S0 xg belongs to
I'*(v).

A-3.I(a): The rest points satisfy the factored equations z(6 — 2y — 6z) = 0,
y(—=7+ 2z —y) = 0. Solving gives rest points (0,0), (0,-7), (1,0), (2,-3).

The linearization about a rest point is u’ = Au where A is the Jacobian matrix
of the nonlinear system evaluated at the rest point.

The Jacobian matrix is

J= 6 —2y — 12z —2z
- 2y —7-2y+2z )’

At the four rest points this matrix becomes respectively

J(O,O):<(6) _(;), J(150)2<_g :§>a

J(0,-7) = < _?2 2) J(2,-3) = < __12 _g )

(b) The rest points, their stability and their classifications are:

(0,0) unstable hyperbolic point
(1,0)  stable node
(0,—7) unstable node
(2,—3) unstable hyperbolic point

(c) The drawing, omitted here, should have a graph window at least as large
as -1 <z <3, =8 < y < 1. Appearing on the graph should be the
rest points, their stability and their classification. Optionally, the semiaxes
of the hyperbolas at the hyperbolic points can be drawn using eigenvector
information. Arrows showing the direction of flow are optional.

A-3.II: The rest points of u' = f(u) are found from the equations 0 =
—y + zw, 0 = z + yw. Therefore, the only rest point is z = y = 0, that is,
f(u) =0 implies u = (0,0).

The polar form of the system implies that » = 1 and r = 2 are invariant sets.
They correspond exactly to periodic solutions (cos ¢, sint) and (2 cost,2sint).
These periodic solutions will be proved to be limit cyles according to the
statement of the Poincaré—Bendixson theorem, which is:



Assume f € CY(R). Let yv*(v) be the positive semiorbit of z' =
f(x), z(0) = v, assumed to not intersect itself and to be contained
in a compact subset K C D and let all points ugy in the positive
limit set Tt (v) satisfy f(ug) # 0. Then I'*(v) is the orbit of a
periodic solution of u' = f(u) with smallest positive period T.

We freely use the fact that solutions of a C' autonomous two dimensional
system cannot cross. Let v satisfy 0 < |v| < 1. The polar form ' = rw
implies that 7/(¢t) > 0, hence 7(t) increases near t = 0. The non-crossing
property implies r(¢) increases to 1 as ¢ — oo. Therefore, the trajectory of
u' = f(u), u(0) = v for t > 0 does not intersect itself and it stays inside
the compact set 22 + 2 < 1. Because f(ug) = 0 implies ug = (0,0), we
can satisfy the hypothesis of the Poincaré—Bendixson theorem by showing that
' (v) does not contain the origin. This follows directly form 7/(t) > 0. The
Poincaré-Bendixson theorem applies to show that ' (v) is a periodic orbit ,
that is, v = 't (v) for all 0 < |v| < 1. The argument can be repeated for
1 < |v| < 2 to prove that r(t) decreases to 1 as t — oo and again v = I'* (v).
That |v| = 1 for all v €  follows from the argument just made, so v is the unit
circle, the same invariant set for all choices of v, 0 < |v| < 1or 1 < |v| < 2.
The invariant set » = 1 is a limit cycle, by the argument just presented.

The limit cycle result for » = 2 is obtained by applying the same kind of
arguments to a related system obtained from the change of independent vari-
able s = —t. The change replaces the system by du/ds = —f(u) and the
polar system by dr/ds = —rw, df/ds = —1. Translating back to the original
system, the set » = 2 is a limit cycle.

Exercise A-4. Select with a check—-mark and solve either A-4.1 or A-4.1I:

I:l A-4.1: Assume f : D — R" is continuous and f is bounded by a constant m on
a subdomain Dy C D. Let u(t) be a solution of v’ = f(t,u) with (¢,u(t)) € Dy on

a<t<hb.

(a) Prove that u(t) satisfies a Lipschitz condition |u(t1) — u(t2)| < mlt; — to].

(b) Prove that u(¢) has one-sided limits at ¢ = a and t = b:

limy_,p— u(t) exist and are finite.

(c) Explain the connection between (b) and the extension of solutions of initial value

problems to a maximal interval of existence.

I:l A-4.I1: Let f : [a,b] — R' be continuous and assume f(a)f(b) # 0. Verify the

following properties of topological degree:

(a) If f(b) > 0> f(a), then d(f,(a,b),0) =1
(b) If f(b) < 0 < f(a), then d(f, (a,b),0) = —1
(c) If f(a)f(b) > 0, then d(f, (a,b),0) = 0.

Solution:

limy_4+ u(t) and



A-4.I(a): The integral equation u(t) = ug + fti) f(r,u(r)) dr implies that
fu(tn) —u(t2)] < | £ (r,ur))| dr| < mity ~to].

A-4.I(b): A sequence {u(t,)} with {t,} decreasing to t = a will by (a) be
a Cauchy sequence hence convergent. This proves the left-hand limit exists.
The right-hand limit is done similarly.

A-4.1I(c): The case of right extension will be discussed. It is assumed that
uo(t) solves u' = f(t,u) and it exists on a < t < b. Using the limiting value
uf = limy_,p— ug(t), provided by (b), the initial value problem u' = f(t,u),
u(b) = ug is solved to give a solution u1(t) defined for |t — b| < a. We then
have the task of proving that the patched function

ug(t) a <t<b,
u(t) =< uj t =0,
’U,l(t) t Z b

solves the differential equation u' = f(¢,u) on (a,b + «), or equivalently the
integral equation u(t) = u(tg) + ftto f(r,u(r))dr for some a < ty < b. Thus,
the issue is the continuity of u(¢), which is settled directly by (b).

A-4.1IT: Define a linear function g with g(a) = f(a), g(b) = f(b). Then
d(g, (a,b),0) is defined because g(xz) # 0 on the boundary of (a,b). Direct
calculation uses the definition

d(g, (a,0),0) = Y g'(z)

oo 9 @1

If g(a)g(b) < 0, then d(g, (a,b),0) = +1, because there is exactly one root
of g(x) = 0 in (a,b). More precisely, d(g, (a,b),0) =1 for g(a) < 0 < g(b)
and d(g, (a,b),0) = —1 for g(a) > 0 > g(b). If g(a)g(b) > 0, then the
linear equation g(z) = 0 has no roots in (a,b), therefore d(g, (a,b),0) = 0 for
g(a)g(b) > 0.

The homotopy H (t,A) = (1 — A)f(t) + Ag(t), a <t < b, 0 <X <1, equals
f(a) or f(b) at a boundary point ¢ of [a,b], hence it is nonzero there, and by
homotopy invariance of the topological degree, d(f, (a,b),0) = d(g, (a,b),0).
A-4.11(a): From above, d(f,(a,b),0) = d(g, (a,b),0) = 1.

A-4.11(b): From above, d(f, (a,b),0) = d(g, (a,b),0) = —1.

A-4.11(c): From above, d(f, (a,b),0) = d(g, (a,b),0) = 0.



Part B
Partial Differential Equations
Do three (3) problems from Part B for full credit.

Exercise B-1. Consider the Sturm-Liouville problem z?(z?u’)’ + Au = 0 on 1/2 <
z < 1 with boundary conditions u(1/2) = u(1) = 0.

(a) State without proof the main theorem on eigenfunction expansions which applies
to this example.

(b) Use the change of variables w(t) = u(1/t) to transform the differential equation into
d?w/dt? + Mw = 0. Then calculate the eigenvalues )\, and eigenfunctions u,,, by citing
without proof a result for the Sturm-Liouville problem 3" + Ay = 0, y(a) = 0 = y(b).

(c) Sturm oscillation theory and the Priifer transformation are used in the general
theory to produce the candidate eigenvalues and eigenfunctions. Sketch briefly how
this is accomplished, without proofs.

Solution:

B-1.I(a): Let (p(t)y')' +(q(t)+Ar(t))y = 0 have continuous coefficents p, g,
7 on [a,b] with p(t) > 0 on [a,b] and r(t) > 0 on (a,b). If boundary conditions
y(a) = y(b) = 0 are imposed, then there exists an infinite increasing sequence
{An} of eigenvalues and corresponding eigenfunctions {y, } such that A,, — oo
and n — oo and f: YnYmT dt = 0 for n # m. The eigenfunctions are complete
in the Hilbert space of functions f satisfying f: |f(#)|>r(t) dt < oo equipped

with inner product (f,g) = J° f(t)g(t)r(t) dt and norm ||| = /{F, F)-
B-1.I(b): The change of variables w(t) = u(1/t), = = 1/t satisfies for
" = d/dz the relation dw/dt = u'(z)(—x?) or u'(x) = —t% dw/dt, therefore

2?(2?u'(z)) = t72d(—dw/dt)/dx
= —t (—t*d*w/dt?)
v /di2.,

It follows that z%(z%u')’ + Au = 0 if and only if dw/dt? + Mw = 0. The
boundary conditions transform to w(1) = w(2) = 0. We know this:

Lemma. The eigenpairs of d?y/dt? + Ay = 0, y(a) = 0 = y(b) are given by
An = (n7/(b— a))?, y, = sin (n7(t — a)/(b — a)).

The eigenpairs of the original problem are therefore given by A\, = (nm)?,
up(r) = sin (nw(z ! - 1)), n > 1.

B-1.I(c): The Priifer tranformation y = r(t) cos 6(t), p(t)y'(t) = r(t) sinO(t)
is used to convert the question of existence of an eigenpair into the crossing
of O(t) with nm—lines. It is shown that 6(t) crosses with positive slope, and
0(t) — oo, hence there are an infinite number of eigenvalues that limit at in-
finity. The corresponding eigenfunction is taken to be y = r(t) sin #(t), which
has the required properties y(a) = y(b) =0, y # 0.

Orthogonality of the eigenfunctions is not a part of this discussion, because
it follows by a general argument, in which the differential equations satisfied



by the two eigenfunctions are multiplied by an eigenfunction, then subtracted
followed by an integration over [a, b] to obtain an integral identity. This integral
identity reduces to the desired orthogonality condition.

Exercise B-2. Select with a check mark | /| and solve either B-2.1 or B-2.1I:

I:l B-2.1: Define the Sobolev space H™(2) for open 2 C R™. Then
(a) Prove that H™(Q) is a Hilbert space.

(b) Give an example of a sequence which shows that the subspace C([0,1]) in L(0, 1)
is not complete in the L'-norm.

(c) Compute the distributional derivatives 0f and 82 f for f(z) = |z| in H?(—o0, 00).
Assume results for the Heaviside unit step and Delta.

I:l B-2.1I: Define what it means for H to be a Hilbert space. Then:

(a) Explain the meaning of the formula H = M @ M+ and give conditions on M for
when it is true (do not give proofs).

(b) State the Riesz representation theorem and use (a) to prove it.

Solution:

B-2:1: Let © be open in R™. The space C™(2) is the space of restrictions to
Q of functions in CJ*(R"). Equip this linear space with the inner product

(f9) =3 /QD“f-D—“gdx

a<m

and let ||f|| = +/(f,f)- Define H™() to be the completion of the linear

space C™(£2) with the norm || - ||.

B-2.I(a): The space H™ is already complete, so the issue is whether it is an

inner product space. The inner product defined on C™(€2) extends uniquely

under completion to a function (f, g) which agrees with (f, g) on C™(2). The
inner product properties to verify are (1) (fi + f2,9) = (f1,9) + (f2,9); (2)

(cf,9) = c{f,9) (3) (f,9) = {9, ); (4) (f,f) > 0and (f,f) = 0 implies
f = 0. Properties (1),(2) and (3) follow by limiting, because the inner product

on C™()) has these properties. Limiting also shows (f, f) > 0 in (4). To

prove the last part of (4), select a sequence {f,} in C™(2) convergent in

the H™—norm to f with (f,f) = 0. Then ||f.l| = /(fn, fn) converges to
V{f,f) =0 as n — oo. Therefore, lim,,_,o fr, = 0 in H™(2), which by the
completion process implies f = 0.

B-2.1(b): Let

0 0<t<05—1/n,
fa®={ n(t—05)+1 05—1/n<t<0.5,
1 05<t<1.



For k>0, ||fn — faskll < 1/n, where || f|| = [, |f(£)|dt is the usual norm
in L1(0,1). Therefore, {f,} is Cauchy in L'(0,1). If the sequence limits
to an element f of C([0,1]), then f(t) = 0 for 0 < ¢ < 0.5 and f(¢t) =1
otherwise, which violates the continuity of f at ¢ = 1/2. This proves that
{fa} is Cauchy in L' but has an L!-limit that does not belong to C([0, 1]).
Therefore, C([0,1]) fails to be complete in the L' norm.

B-2.I(c): A distributional derivative F' = 9f is defined by the relation

| ~t@d@da= | F@)g(@)da

for all g of class C7°. We assume the result 0H = 4 for Heaviside’s function H.
It is expected that 0f = —1 for x < 0 and 0f = 1 for x > 0. The claim is that
(0f)(9) = [ F(z)g(z) dz where F(z) = —1 for z < 0, F(z) =1 for z > 0,
thatis, F(z) = —1+2H(x) or briefly, 3f = 2H —1. The proof is by expansion
of the two sides of the defining relation followed by integration by parts, which
shows the two sides equal. Finally, 62f = 0(—1+ 2H) = 20H = 2.

B-2.1IT: A linear space H is equipped with a norm ||f|| = v/(f, f) and inner
product (f,g) satisfying the requirements (1) (f1 + f2,9) = (f1,9) + (f2,9),
(2) (cf,9) = c(f,9). (3) (f,9) = (9,f), (4) (f,f) = 0 and (f,f) =0

implies f = 0. This inner product space is called a pre-Hilbert space, and if
it is complete, then it is called a Hilbert space. Complete means that Cauchy
sequences in the space converge to elements of the space.

B-2.II(a): The formula H = M & M applies when M is a closed subspace
of H. It means that each element f € H can be uniquely expressed as
f=m+nwheremecMandne Mt ={yc H:(y,f) =0, fecM}

B-2.II(b): The Riesz theorem says that each continuous linear functional
f on a Hilbert space H can be represented as f(z) = (y,z) in terms of the
inner product (-,-) on H, for some unique y € H.

Riesz proof: To prove uniqueness of y, write (y1,2) = (yo,x) as (y1 —
y2,x) = 0 and substitute z = y; — y2. To prove existence of y, take y = 0 for
the zero functional. Otherwise, f # 0 and the kernel M = {z : f(z) = 0} is
a closed subspace of H which does not equal H. It follows from the product
theorem H = M @& M~ that M~ is nontrivial, so we choose n € M~ with
In]] = 1 and f(n) # 0. Define y = f(n)n. We prove that the formula
f(z) = (y,z) is valid for all z € H.

Given z € H, write z = m + z where m € M and z € M*. Define
w = f(n)z — f(z)n. Then w € M+, but also f(w) = 0 forces w € M, hence

by uniqueness, w = 0, that is, f(n)z = f(z)n. The proof is completed by

10
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Exercise B-3. Select with a check—mark and solve either B-3.1 or B-3.11:

I:l B-3.I: Let u, h denote elements of some Sobolev space and consider the dis-
tributional differential equation —u” + uw = h with Dirichlet boundary conditions
u(0) = u(1) = 0.

(a) Formulate an abstract boundary value problem a(u,v) = (h,v), by defining the
sequilinear form a(u,v), the Hilbert space H and the inner product (-, ).

(b) Discuss in detail how the Riesz theorem applies to solve the abstract boundary
value problem.

(c) Is enough known about the Hilbert space solution u for it to be a solution of the
distributional differential equation? Explain.

| ] B-3.IL Let ¢ € H}(G) and denote by | - || the usual norm in L*(G), G open in
R™. Assume |z1| < K for all z € G.

(a) Prove the Poincaré inequality ||¢|| < 2K |0z, ¢||.

(b) Explain, without proof, how to use generalizations of the Poincaré inequality to
solve the abstract boundary value problem for distributional differential equations of
the form Au = f.

Solution:

B-3.I(a): Let H be the Hilbert space H}(0,1) equipped with norm ||f|| =
V/(f, f) and inner product

(9)= [ (70-+0575) av.

Define the sesquilinear form by

a(u,v) = /01 (8u(a:)8’u—(x)+u(x)@) dz.

The abstract problem is to solve for u € H in the problem

1 -
a(u,v) :/0 h(z)v(z)dz, ve€ H.
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B-3.I(b): The abstract boundary value problem is solved by applying the
Riesz theorem, because a(u,v) is exactly (u,v). The Cauchy-Schwartz in-
equality implies that fol h(z)v(z) dz defines a continuous conjugate linear func-
tional on H. The space H contains the boundary conditions u(0) = u(1) = 0,
in the abstract sense of the trace operator, as found in Showalter’s textbook.
B-3.I(c): The abstract boundary value problem is solved for u € H{(0,1),
which is identified with the space of absolutely continuous functions on [0, 1]
satisfying u(0) = u(1) = 0. If h belongs to L?(0,1), then u exists by the
Riesz theorem and the integral equation

/01 (u' (z)v' (z) + u(z)v(z) — h(z)v(z)) dz =0

is satisfied for all v € H. This is a weak form of the original boundary value
problem.

If u solves the distributional problem —u"”+u = h, then u" = u—h € L?(0,1).
Therefore, u € H? will be necessary, if it is possible to recover the distributional
differential equation from the weak formulation. Showalter (Ch 3) discusses
how to do this, in a variety of ways.

Remark. A more classical approach on the problem would start with the
variation of parameters relation

T
u(z) = csinh(z) — / sinh(z — r)h(r) dr.
0
The constant c¢ is chosen to make u(1) = 0, possible because sinh(1) # 0.
Assuming h continuous makes u” continuous and —u" + u = h.
B-3.II(a): Density implies that it is only required to prove the Poincaré
inequality for ¢ € C§°(G). Consider the identity

Oy (21 6(2) - 8(2)) = [$(@)* + 21 (011 6(2) - $(2) + $(3) - O 6() ) -

This identity will be integrated over G. The divergence theorem applies to the
term Oy, (xl o(z) - ¢(x)) to obtain zero, because of ¢(z) = 0 for z € 9G.
Integrating over G then gives the formula

~ [1#@)F o= [ a1 (0n6(2) - 30) + $(a) - 00, (@)) d.

Square both sides and estimate the integrand on the right by 2K|¢| |0z, ¢|.
Apply the Cauchy-Schwartz inequality to obtain

(/G\fis(x)I?dx)Z S4K2/G|¢($)|2d$/a\3z1¢(x)|2dx.

Divide and take square roots to finish the proof.

B-3.II(b): Generalizations of the Poincaré inequality take the form of an
imbedding inequality of the form

Q 2
[@prast Y [ 0w d.

|a|=1
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Such inequalities say that an equivalent norm to the H'-norm can be obtained
by dropping the terms for summation index |a| = 0. The inner product can
be replaced by a similar truncation of terms. The result is that a differential
equation like Au = f has an abstract formulation a(u,v) = [, fvdz where
a(u,v) is this re-defined inner product on H!. The Riesz theorem applies
directly, giving existence of a solution u to the abstract problem.

Exercise B-4. Sobolev proved an imbedding inequality of the form || f||z < M]||f||a,
where A = H™(G) and B is the set of functions u such that D®u is uniformly contin-
uous on G for |a| < k. Give, without proof, the conditions on the open set G C R"
and the integers m and k.

Select with a check-mark and solve either B-4.1 or B-4.11:

I:l B-4.1: Under Sobolev’s conditions on G, m and k, each f € H™(QG) satisfies
0“f = D%g a.e. for some k-times continuously differentiable function g, |a| < k.

(a) Prove this, assuming the imbedding inequality above.

(b) Determine for n = 2 the least m such that an element in H™(G) has 4 continuous
derivatives (G as above).

I:l B-4.1I: Regularity theory implies that certain abstract boundary value problems
a(u,v) = (F,v) can be solved for u € H?T5(G) provided F € H*(G). Consider the
Dirichlet problem for Au = F, z € G.

(a) Assume G is a disk in R?. Give without proof a smoothness condition on F for
the existence of C? solutions u.

(b) Assume G is bounded and open in R?. Give without proof conditions on G and
O0G, and a smoothness condition on F, for the existence of C? solutions w.

Solution:

B-4 Conditions: The set G is open, bounded in R™ and G satisfies a cone
condition, meaning that the radius p > 0 and volume v > 0 of a cone can
be specified such that each point ¥ € G is the vertex of a cone of radius
p and volume v that lies entirely in G. The integers m and k must satisfy
m>k+n/2.

B-4.I(a): Given m > k+n/2, G bounded open in R"™ with cone condition,
Sobolev imbedding says that

sup [D%u(z)| < Mllul|, [af <F,
reG

where ||-|| is the norm in H™(G), for each u € A = C¥(G); the latter is the set
of u such that D% is uniformly continuous on G for |a| < k. If w € H™(G),
then density implies w can be approximated by functions in w; € C™(G),
that is, w = lim;_,,, w;. Because G'is bounded and m > k, each w; belongs
to A. Set u = wj;, — w; in the Sobolev imbedding inequality to show that

{w;} is Cauchy in A. Let g = lim;j_,o, w; in the Banach space A. Then each
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distributional derivative 0%w, being in L2, has to agree a.e. with D%g, for
la| < k.

B-4.I(b): Let n = 2. We determine the least m such that an element
in H™(G) has 4 continuous derivatives. Because m > k + n/2 reduces to
m > k + 1 and we want k = 4, then m > 5 is required. The least is m = 6.

B-4.I1(a): We have u € H?*"$(G) provided F € H*(G), according to
regularity theory. To apply Sobolev imbedding with n = 2 and k£ = 2 (to get
C? solutions) we need s > k +n/2 or s > 3. Already, the disk satisfies the
cone condition. Likewise, the coefficient smoothness conditions and manifold
conditions on G are satisfied. Therefore, F € H*(G) implies u € C?(G) for
a disk G.

B-4.II(b): It is known that G bounded open satisfies the cone condition if
0G is a C! manifold. Regularity theory requires F € H*(G) to obtain u €
C?(G), as in (a), but we must add that 8G is a C?>T* manifold where s = 4.
No additional requirements surface for the differential equation, because its
coefficients are of class C°.
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