Name.

\qquad

Differential Equations 5420 Midterm Exam 1, Spring 2003 Due Date: January 31, 2003

Instructions. The four problems below are take-home, due on the date above. Answer checks are expected. If maple assist is used, then please attach the maple output.

1. (Matrix Exponential) Prove that the matrix series $\sum_{n=0}^{\infty} A^{n} / n$! converges. Do it by showing that each element of the partial sum matrix $S_{N}=I+\cdots+A^{N} / N$! corresponds to a Cauchy sequence of real numbers.
2. (Exponential identities) Prove that: (1) $A B=B A$ implies $e^{A+B}=e^{A} e^{B}=e^{B} e^{A}$, (2) $A=\boldsymbol{d i a g}(A 1, A 2, A 3)$ implies $e^{A}=\boldsymbol{\operatorname { d i a g }}\left(e^{A 1}, e^{A 2}, e^{A 3}\right)$, (3) $e^{N}=I+\cdots+N^{k} / k$! provided $N^{k+1}=0$.
3. (Eigenanalysis) Find the eigenvalues, eigenvectors and generalized eigenvector chains for the matrix

$$
A=\left[\begin{array}{rrrrrrr}
12 & 25 & 0 & 0 & 0 & 0 & 0 \\
-5 & -8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

Then solve $X^{\prime}=A X$.
4. (Solving $X^{\prime}=A X$) Give an example of a system $X^{\prime}=A X$ with A real 4×4 having solution components involving only $\sin 2 t, \cos 2 t, t \sin 2 t, t \cos 2 t$. Please display A, solve the system $X^{\prime}=A X$ and verify the solution.
5. (Finite dimensional spectral theory) Using Hirsch-Smale as a reference, write a summary of finite dimensional spectral theory, as it applies to the problem $X^{\prime}=A X$ with $A n \times n$ real. Describe in detail how to form the real matrix P of generalized eigenvectors from the chains of generalized eigenpairs. Include one illustration which computes from A the chains, P and the real Jordan form, followed by solving $X^{\prime}=$ $A X$.

