Name. _____

Differential Equations 5420 Midterm Exam 1, Spring 2003 Due Date: January 31, 2003

Instructions. The four problems below are take-home, due on the date above. Answer checks are expected. If maple assist is used, then please attach the maple output.

- 1. (Matrix Exponential) Prove that the matrix series $\sum_{n=0}^{\infty} A^n/n!$ converges. Do it by showing that each element of the partial sum matrix $S_N = I + \cdots + A^N/N!$ corresponds to a Cauchy sequence of real numbers.
- 2. (Exponential identities) Prove that: (1) AB = BA implies $e^{A+B} = e^A e^B = e^B e^A$, (2) A = diag(A1, A2, A3) implies $e^A = \text{diag}(e^{A1}, e^{A2}, e^{A3})$, (3) $e^N = I + \dots + N^k/k!$ provided $N^{k+1} = 0$.
- **3.** (Eigenanalysis) Find the eigenvalues, eigenvectors and generalized eigenvector chains for the matrix

	12	25	0	0	0	0	0
	-5	-8	0	0	0	0	0
	0	0	-1	1	2	0	0
A =	0	0	0	-1	1	0	0
	0	0	0	0	-1	0	0
	0	0	0	0	0	-1	1
	0	0	0	0	0	0	-1

Then solve X' = AX.

- 4. (Solving X' = AX) Give an example of a system X' = AX with A real 4×4 having solution components involving only $\sin 2t$, $\cos 2t$, $t \sin 2t$, $t \cos 2t$. Please display A, solve the system X' = AX and verify the solution.
- 5. (Finite dimensional spectral theory) Using Hirsch-Smale as a reference, write a summary of finite dimensional spectral theory, as it applies to the problem X' = AX with $A \ n \times n$ real. Describe in detail how to form the real matrix P of generalized eigenvectors from the chains of generalized eigenpairs. Include one illustration which computes from A the chains, P and the real Jordan form, followed by solving X' = AX.