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The third project is divided into two parts. Part A is on
integration theory for improper integrals and some related
calculations that are used in Laplace transform theory. The
basic work for Part A is described in Edwards-Penney,
Chapter 10. Part B consists of additional examples, in par-
ticular therein are substantial applications of the Laplace
theory applied to differential equations with step function
inputs and impulsive inputs. Equal credit is given for the
two parts. Please submit Part A and Part B in 10 days.
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Laplace Transform.

The Direct Laplace transform of f(t) is the integral
L) = [ et
0

There are maple methods for evaluating the integral sym-
bolically. See the examples below for details.

Problem 3A.1. (Evaluation of improper integrals)

Derive the following formulas and then check the answers
using maple. In each case, s > sg for sufficiently large so.
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Problem 3A.2. (Evaluation of improper integrals)

Evaluate the improper integrals below using maple, check-
ing the given answer.
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Inverse Laplace Transform.

The Inverse Laplace transform of F(s) is the solution f(t)
of the equation

/0 T et f (1)t = F(s).

This is basically a table lookup, provided the integration
table is rich enough to contain the answer for f(t). The
example in the maple notes below shows how to do it.

Problem 3A.3. (Inverse Laplace)
Find f(¢) in the equations below using maple.
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Differential equations.

The solution of a differential equation in maple is a powerful
aid to computation. Most intuition comes from hand-built
solution methods, but to get the right answer, an assist is
sometimes essential. The basic syntax is communicated by
the example in the notes below.

Problem 3A.4. (Differential equations)

Solve with maple methods the following differential equa-
tion and show the answer is 2 = 2te~*/% sin(3t).

2" + 0.42' 4+ 9.04z = 12¢ /% cos(3t),
z(0)=0, z'(0)=0.

Problem 3A.5. (Differential equations)



Solve with maple methods the following differential equa-
tion and show the answer is z = ¢sin(3t).

z" + 9z = 6 cos(3t),
z(0) =0, 2'(0)=0.

Notes 3A.1. The improper integral is defined by the
limit relation
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The integrand F(t) in all cases are continuous and therefore
the finite integral always makes sense.

The first two integrals are done by direct evaluation while
the third and fourth require integration by parts. For ex-
ample,
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where

u=t, dv=edt.

Evaluating gives
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In the limit as N — oo, the exponential terms are carried

to zero and the answer is

> 1
—st —
/0 e~ *[tldt = 2

To check the answer using maple, apply the following ex-
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ample.

F:=t->t"2xexp(-s*t):
int(F(t),t=0..infinity);

In maple V5, the response is

Definite integration: Can’t determine
if the integral is convergent.

Need to know the sign of --> s

Will now try indefinite integration
and then take limits.

From this display, it is usually easy to decide upon the an-
swer, by setting to zero the exponential terms with negative
exponent.

To automate maple and compute the limit, add assump-
tions about the variables to maple’s internals, as follows:

F:=t->t"2*exp(-s*t):
assume (s>0) :
int (F(t),t=0..infinity);

maple Notes 3A4.2.

The example below shows how to do it in maple V5.

with(inttrans):
L:=f->eval(laplace(f,t,s)):
L(t*exp(t)*cos(t));

maple Notes 3A4.3.

The example below shows how to do it in maple V5.

with(inttrans):
LI:=F->eval(invlaplace(F,s,t)):
LI((1/4)/s"2);

The answer is f(t) = (1/4)t. The answer means the Laplace
integral of (1/4)t equals (1/4)/s.

maple Notes 3A4.4 and 3A.5.

f:=t->6*%exp(-t/5)*cos(3*t):
de:=diff(x(t),t,t) +
0.4xdiff(x(t),t)+9.04*x(t) = f(t):
ic:=x(0)=0,D(x) (0)=0:
dsolve({de,ic},x(t) ,method=laplace) ;

The displayed answer is

z(t) = te~/5 sin(3t).
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Part B consists of applications to differential equations with
periodic step function inputs. Please submit Part B with
Part A.

Heaviside’s function. Let H(t) denote Heaviside’s
unit step function,

1 t>0

H(t):{ 0 t<0.

This unit step function is equivalent to a switch turned on at
t = 0. A switch turned on at ¢ = a is given by H(t—a). En-
gineering functions with switches can be constructed from
H by taking combinations. For example, a switch turned
on for interval a <t < b is given by the combination

1 a<t<b

H(t—a) - H(t-b) = { 0 otherwise.

Complex switches occur naturally in applications, for ex-
ample, a voltage of 12 volts turned on in a circuit at time
t=0.51is given by V = 12H(t — 0.5).

Periodic switching and Heaviside’s function.
Periodic switching functions can be written in terms of
H by series methods. For base function F' defined on
0 <t <T, a T-periodic extension f to 0 < t < o0 is
defined by the relations

f@)=F({t—nT) for nT<t<nT+T
= F()[H(t) — H(t — T)]
+Ft-T)Ht-T)-H({t-2T)]+---

= iF(t — ET)[H(t — kT) — H(t — kT — T)].
k=0

On computers, F' should be defined to be zero outside
0<t<T.

The series can be written with just positive indices:
f@)=F®)[1 - H(t—-T)]

+ i F(t— kT)[H(t — kT) — H(t — kT — T)).
k=1

Problem 3B.1. (Waves)

Let T' = 27 be the period for the following finite T-periodic
waves. Code the waves in maple and then plot them for 10
periods 0 <t < 107

Square Wave.

FO) = 3" (H (¢ = KT) - H (£~ KT —T/2)).
Sawtc:(;h Wave.

) = kioo - k‘ (H(t— KT) — H(t — kT — T)).

Triangular Wave.
10 2%
fo=> (T - 2k> (H(t—kT+T/2)— H (t — kT —T/2))

k=0

Half-Wave Sine Rectifier.
f(t) = sin(t)(H(t — kT) — H(t — kT — T/2))

k=0

Full-Wave Sine Rectifier.

10
f(t) = |sin(t)|(H(t — kT) — H(t — kT - T))
k=0

Problem 3B.2. (Sawtooth wave forced oscillator)
Plot the solution of the problem

2"(t) +z(t) = f(1),

where f(t) is the sawtooth wave of 3B.1, over t = 0 to
t=10T, T = 2r.

z(0) = z'(0) = 0,

Problem 3B.3. (Triangular wave forced oscilla-
tor)

Plot the solution of the problem

2"(t) +z(t) = f(1),

where f(t) is the triangular wave of 3B.1, over t = 0 to
t=10T, T = 2r.

z(0) = z'(0) = 0,

Problem 3B.4. (Half-wave sine rectifier forced
oscillator)

Plot the solution of the problem

2"(t) +z(t) = f(1),

where f(t) is the half-wave sine rectifier of 3B.1, over t =0
to t = 10T, T = 2r.

z(0) = z'(0) = 0,



Problem 3B.5. (Resonance in a forced oscillator)
The solution of the problem

2" (t) + a’z(t) = f(t), z(0)=2'(0)=0

may become unbounded at ¢ — oo because the natural
frequency of the input f(t) exactly matches the natural
frequency a of the unforced oscillator z” + a?xz = 0. Let
a=1and T = 27,4n,6n,87,10mw. Determine by graphing
the solution z(¢) which combinations of f(t) and T produce
unbounded solutions (resonance), where f is one of the five
types of waves given in 3B.1. Present a table of answers,
wave against resonant period 7.

maple Notes 3B.1. To code it using maple, modify
the following example, which is for the square wave. In
maple 5, the Heaviside function is not defined at t = 0,
and this causes problems with graphics, so a local version
of the Heaviside function must be defined, as below. In
other versions of maple, this might not be required.

t:=t’:f:="£7:T:=2%Pi:

H:=t-> piecewise(t<0,0,1):
squarewave:=

sum(H (x-k*T)-H(x-k*T-T/2) ,k=0..10) :
f:=t->evalf (subs(x=t,squarewave)):
opts:=style=point:
plot(£,0..10%T,opts);

The sawtooth wave and triangular wave are coded similarly.
The changes occur in only one line above:

sawtoothwave:=sum( (x/T-k) *
(H(x-k*T)-H(x-k*T-T)),k=0..10):
trianglewave:=sum( (2*x/T-2%k) *
(H(x-k*T+T/2)-H(x-k*T-T/2)) ,k=0..10) :

The figures for the half-wave sine rectifier and the full-wave
sine rectifier look considerably more realistic with the plot
options below.

opts:=style=line,scaling=constrained:
plot(£,0..10%T,opts);

The half-wave sine rectifier is a multiple sin(t) of the square
wave. It may help to use the plot options above with the
other waves, in order to obtain realistic plots.

maple Notes 3B.2. To code it using maple, modify the
following example, which is for the square wave. The code
changes slightly from the plot code of 3B.1, starting the
sum index at k = 1 instead of k£ = 0. The term for k¥ = 0,
namely H(z) — H(x—T/2), is replaced by 1— H(x —T'/2),
to prevent internal errors in the package odeplot. Option
numpoints=90 may have to be changed, depending on the
maple version (try removing it completely).

with(plots):

t:=t’:x:="x’:pp:=’pp’ :T:=2%Pi:
H:=t-> piecewise(t<0,0,1):
squarewave:=1-H(x-T/2)+

sum (H(x-k*T)-H(x-k*T-T/2) ,k=1..10):
f:=t->evalf (subs(x=t,squarewave)):
de:=diff(x(t),t,t)+x(t)=£(t):
ic:=x(0)=0,D(x) (0)=0:
pp:=dsolve({de,ic},x(t),type=numeric):
opts:=numpoints=90,color=black:
odeplot(pp, [t,x(t)],0..10%T,opts);

maple Notes 3B.3. The example follows 3B.2. Change
the square wave code as follows.

triangularwave:=(2*x/T)* (1-H(x-T/2))+
sum ( (2%x/T-2%k) *
(H(x-k*T+T/2)-H(x-k*T-T/2)) ,k=1..10):

maple Notes 3B.4. The example follows 3B.2. Change
the square wave code as follows.

halfsinewave:=sin(x)*(1-H(x-T/2))+
sum(sin(x)*
(H(x-k*T)-H(x-k*T-T/2)) ,k=1..10):

maple Notes 3B.5. The work is substantial, because
the plot options have to be adjusted to fit each problem.
There is no way to tell if 10 or 20 periods should be used
in the graphic, because unboundedness is a property that
depends upon scale, and about scale there is no intutition,
for these problems. Test the results with this answer: for
the triangular wave, there are two periods which are non-
resonant, and the others show resonance. It is left for you
to report the resonance or nonresonance for the other four
waves.




