
Chapter 8

Linear Algebra

The subject of linear algebra includes the solution of linear equations,
a topic properly belonging to college algebra. The applied viewpoint
taken here is motivated by the study of mechanical systems and electrical
networks, in which the notation and methods of linear algebra play an
important role.

Section 8.1

ax + by = e
cx + dy = f

An introduction to linear equations requiring only a col-

lege algebra background: parametric solutions, reduced

echelon systems, basis, nullity, rank and nullspace.

Section 8.2

AX = b
Y ′ = AY

Matrix–vector notation is introduced, especially designed

to prepare engineers and scientists to use computer user

interfaces from matlab and maple. Topics: matrix equa-

tions, change of variable, matrix multiplication, row oper-

ations, reduced row echelon form, matrix differential equa-

tion.

Section 8.3

AX = λX
P−1AP = D

Eigenanalysis for matrix equations. Applications to dif-

ferential equations. Topics: eigenanaysis, eigenvalue,

eigenvector, eigenpair, ellipsoid and eigenanalysis, change

of basis, diagonalization, uncoupled system of differential

equations, coupled systems.
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8.1 Linear Equations

Given numbers a11, . . . , amn, b1, . . . , bm and a list of unknowns x1, x2,
. . . , xn, consider the nonhomogeneous system of m linear equations
in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm.

(1)

Constants a11, . . . , amn are called the coefficients of system (1). Con-
stants b1, . . . , bm are collectively referenced as the right hand side,
right side or RHS. The homogeneous system corresponding to sys-
tem (1) is obtained by replacing the right side by zero:

a11x1 + a12x2 + · · · + a1nxn = 0,
a21x1 + a22x2 + · · · + a2nxn = 0,

...
am1x1 + am2x2 + · · · + amnxn = 0.

(2)

An assignment of possible values x1, . . . , xn which simultaneously satisfy
all equations in (1) is called a solution of system (1). Solving system
(1) refers to the process of finding all possible solutions of (1). The
system (1) is called consistent if it has a solution and otherwise it is
called inconsistent.

In the plane (n = 2) and in 3-space (n = 3), equations (1) have a geo-
metric interpretation that can provide valuable intuition about possible
solutions. College algebra courses often omit the discussion of no so-

lutions or infinitely many solutions, discussing only the case of a single
unique solution. In contrast, all cases are considered here.

Plane Geometry. A straight line may be represented as an equa-
tion Ax + By = C. Solving system (1) is the geometrical equivalent of
finding all possible (x, y)-intersections of the lines represented in system
(1). The distinct geometrical possibliities appear in Figures 1–3.

x

y

Figure 1. Parallel lines, no solution.

−x + y = 1,
−x + y = 0.
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x

y
Figure 2. Identical lines, infinitely

many solutions.

−x + y = 1,
−2x + 2y = 2.

y

x
P

Figure 3. Non-parallel distinct lines,

one solution at the unique intersection

point P .

−x + y = 2,
x + y = 0.

Space Geometry. A plane in xyz-space is given by an equation
Ax + By + Cz = D. The vector A~ı + B~ + C~k is normal to the plane.
An equivalent equation is A(x− x0) + B(y − y0) + C(z − z0) = 0, where
(x0, y0, z0) is a given point in the plane. Solving system (1) is the geomet-
ric equivalent of finding all possible (x, y, z)-intersections of the planes
represented by system (1). Illustrated in Figures 4–11 are some interest-
ing geometrical possibilities.

P

III
I

II

L

Figure 4. Knife cuts an open book.

Two non-parallel planes I, II meet in a line L
not parallel to plane III. There is a unique

point P of intersection of all three planes.

I : y + z = 0, II : z = 0, III : x = 0.

I

II

III

Figure 5. Triple–decker. Planes I, II, III
are parallel. There is no intersection point.

I : z = 2, II : z = 1, III : z = 0.

I = II

III

Figure 6. Double–decker. Planes I, II
are equal and parallel to plane III. There is
no intersection point.

I : 2z = 2, II : z = 1, III : z = 0.
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I = II = III Figure 7. Single–decker. Planes I, II, III
are equal. There are infinitely many
intersection points.

I : z = 1, II : 2z = 2, III : 3z = 3.

III

III

Figure 8. Pup tent. Two non-parallel
planes I, II meet in a line which never meets
plane III. There are no intersection points.

I : y+z = 0, II : y−z = 0, III : z = −1.

III

I = II

L

Figure 9. Open book. Equal planes I, II
meet another plane III in a line L. There are
infinitely many intersection points.

I : y+z = 0, II : 2y+2z = 0, III : z = 0.

I

II

III Figure 10. Book shelf. Two planes I, II
are distinct and parallel. There is no
intersection point.

I : z = 2, II : z = 1, III : y = 0.

L

III

II
I

Figure 11. Saw tooth. Two non-parallel
planes I, II meet in a line L which lies in a
third plane III. There are infinitely many
intersection points.

I : −y+z = 0, II : y+z = 0, III : z = 0.

Parametric Solution. The geometric evidence of possible solution
sets gives rise to an algebraic problem:

What algebraic equations describe points, lines and planes?

The answer from analytic geometry appears in Table 1. In this table,
t and s are parameters, which means they are allowed to take on any
value between −∞ and +∞. The algebraic equations describing the
geometric objects are called parametric equations.
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Table 1. Parametric equations with geometrical significance.

x = d1,
y = d2,
z = d3.

Point. The parametric equations describe a
single point.

x = d1 + a1t,
y = d2 + a2t,
z = d3 + a3t.

Line. The parametric equations describe a
straight line through (d1, d2, d3) with tangent
vector a1~ı + a2~ + a3

~k.

x = d1 + a1s + b1t,
y = d2 + a2s + b2t,
z = d3 + a3s + b3t.

Plane. The parametric equations describe a
plane containing (d1, d2, d3). The cross product
(a1~ı + a2~ + a3

~k) × (b1~ı + b2~ + b3
~k) is normal

to the plane.

To illustrate, the parametric equations x = 2 − 6t, y = −1 − t, z = 8t
describe the unique line of intersection of the three planes (details in
Example 1)

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(3)

To describe all solutions of system (1), we generalize as follows.

Definition 1 (Parametric Equations, General Solution)
The terminology parametric equations refers to a set of equations of
the form

x1 = d1 + c11t1 + · · · + c1ktk,
x2 = d2 + c21t1 + · · · + c2ktk,

...
xn = dn + cn1t1 + · · · + cnktk.

(4)

The numbers d1, . . . , dn, c11, . . . , cnk are known constants and the variable
names t1, . . . , tk are parameters. A general solution or parametric
solution of (1) is a set of parametric equations (4) plus two additional
requirements:

Equations (4) satisfy (1) for −∞ < tj < ∞, 1 ≤ j ≤ k.(5)

Any solution of (1) can be obtained from (4) by spe-
cializing values of the parameters.

(6)

Definition 2 (Minimal Parametric Solution)
Given system (1) has a parametric solution x1, . . . , xn satisfying (4),
(5), (6), then among all such parametric solutions there is one which
uses the fewest possible parameters. A parametric solution with fewest
parameters is called minimal, and otherwise redundant.
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Definition 3 (Gaussian Parametric Solution)
Parametric equations (4) are called Gaussian if they satisfy

xi1 = t1, xi2 = t2, . . . , xik = tk(7)

for distinct subscripts i1, i2, . . . , ik. The terminology is borrowed from
Gaussian elimination, where such equations arise. A Gaussian para-
metric solution of system (1) is a set of parametric equations (4) which
additionally satisfies (5), (6) and (7). See also equations (10), page 288.

For example, the plane x+y + z = 1 has a Gaussian parametric solution
x = 1−t1−t2, y = t1, z = t2, which is also a minimal parametric solution.
A redundant parametric solution of x+ y + z = 1 is x = 1− t1− t2− 2t3,
y = t1 + t3, z = t2 + t3, using three parameters t1, t2, t3.

Theorem 1 (Gaussian Parametric Solutions)
A Gaussian parametric solution has the fewest possible parameters and it
represents each solution of the linear system by a unique set of parameter
values.

The theorem supplies the theoretical basis for the Gaussian algorithm to
follow (page 289), because the algorithm’s Gaussian parametric solution
is then a minimal parametric solution. The proof of Theorem 1 is delayed
until page 296. It is unlikely that this proof will be a subject of a class
lecture, due to its length; it is recommended reading after understanding
the examples.

Answer check algorithm. Although a given parametric solution
(4) can be tested for validity manually as in Example 2 infra, it is im-
portant to devise an answer check that free of parameters. The following
algorithm checks a parametric solution by testing constant trial solutions
in systems (1) and (2).

Step 1. Set all parameters to zero to obtain the nonhomogeneous trial
solution x1 = d1, x2 = d2, . . . , xn = dn. Test it by direct
substitution into the nonhomogeneous system (1).

Step 2. Consider the k homogeneous trial solutions

x1 = c11, x2 = c21, . . . , xn = cn1,
x1 = c12, x2 = c22, . . . , xn = cn2,

...
x1 = c1k, x2 = c2k, . . . , xn = cnk,

(8)

which are obtained formally by applying the partial derivatives
∂t1 , ∂t2 , . . . , ∂tk to the parametric solution (4). Verify that the
trial solutions satisfy the homogeneous system (2), by direct
substitution.
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The trial solutions in step 2 are obtained from the parametric solution
(4) by setting one parameter equal to 1 and the others zero, followed by
subtracting the nonhomogeneous trial solution of step 1. The partial
derivative idea computes the same set of trial solutions, and it is easier
to remember.

Theorem 2 (Answer Check)
The answer check algorithm described by steps 1–2 above tests the validity
of the parametric solution (4) for all parameter values.

Proof: Although it is possible to verify the result directly (see Example 2,
page 293), the reader is asked to delay the proof until Section 8.2, where matrix
notation is introduced, to simplify the details of proof.

Reduced echelon systems. The plane equation x+y+z = 1 has a
Gaussian parametric solution x = 1− t1 − t2, y = t1, z = t2. We explain
here how it was found, and how to generalize the idea.

The project here is to find Gaussian parametric solutions for systems
(1) which have a special form called a reduced echelon system. The
special form employs instead of the variable names x1, . . . , xn another
set of n = m + k variables u1, . . . , um, v1, . . . , vk, which correspond to
re-ordering or permuting the original variables:

u1 + E11v1 + · · · + E1kvk = D1,
u2 + E21v1 + · · · + E2kvk = D2,

...
um + Em1v1 + · · · + Emkvk = Dm.

(9)

The numbers D1, . . . ,Dm, E11, . . . , Emk are known constants. Such a
system is characterized by this property:

Each of variable names u1, . . . , um appears with coefficient

one as the first variable in exactly one equation.

The variables u1, . . . , um are called leading variables and the re-
maining variables v1, . . . , vk are called free variables. Together, these
variables exhaust the original variable list x1, . . . , xn, that is, they are
a permutation of the original variables.

To obtain the parametric solution, set the free variables v1, . . . , vk equal
to parameters t1, . . . , tk, where −∞ < tj < ∞, 1 ≤ j ≤ k. Then solve
equations (9) for the leading variables u1, . . . , um and back-substitute for
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v1, . . . , vk to obtain a Gaussian parametric solution

u1 = D1 − E11t1 − · · · − E1ktk,
u2 = D2 − E21t1 − · · · − E2ktk,

...
um = Dm − Em1t1 − · · · − Emktk,
v1 = t1,
v2 = t2,

...
vk = tk.

(10)

To illustrate, the reduced echelon system

x + 4w + u + v = 1,
y − u + v = 2,
z − w + 2u − v = 0

(11)

has variable list x, w, u, v, y, z, listed in order of first appearance. The
lead variables are x, y, z and the free variables are w, u, v. Assign
parameters t1, t2, t3 to the free variables and back-substitute in (11) to
obtain a Gaussian parametric solution

x = 1 − 4t1 − t2 − t3,
y = 2 + t2 − t3
z = t1 − 2t2 + t3,
w = t1,
u = t2,
v = t3.

or

x = 1 − 4t1 − t2 − t3,
w = t1,
u = t2,
v = t3,
y = 2 + t2 − t3,
z = t1 − 2t2 + t3.

Computers and Reduced Echelon form. Computer algebra
systems and computer numerical laboratories compute from a given lin-
ear system (1) a new system of the same size, which has a special form:

Definition 4 (Reduced Echelon form)
A linear homogeneous system (2) is in reduced echelon form, abbre-
viated rref, if it has the form (9) and

The leading variables u1, . . . , uk are re-labelings of
variable names xr1

, . . . , xrk
with subscripts in increas-

ing order r1 < · · · < rk.
(12)

If xi is a leading variable, then variables x1, . . . , xi−1

are absent from that equation.
(13)

Any equations without variables appear last as 0 = 0.(14)

The definition for a consistent nonhomogeneous system is identical. For
an inconsistent system, the definition requires a change to (14), to allow
the appearance of an equation 0 = 1, a false equation used primarily to
detect inconsistency.
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Every computer-produced reduced echelon form corresponding to a
consistent system is already a reduced echelon system, except for the
listing of equations without variables.

The reverse is not true. To illustrate, linear system (11) is a reduced
echelon system which satisfies (12) and (13), provided the variable list is
given as x, y, z, u, v, w.

Three rules for equivalent systems. Two systems (1) are said
to be equivalent provided they have exactly the same solutions. For
the purpose of solving systems, there are three reversible operations on
equations which can be applied to obtain equivalent systems:

Swap Two equations can be interchanged without changing
the solution set.

Multiply An equation can be multiplied by c 6= 0 without chang-
ing the solution set.

Combination A multiple of one equation can be added to a different
equation without changing the solution set.

The last two rules replace an existing equation by a new one. The multi-
ply rule is reversed by multiplication by 1/c, whereas the combination
rule is reversed by subtracting the equation–multiple previously added.

Exposition of a set of equations and its equivalent system under these
rules demands that all equations be copied, not just the affected equa-
tion(s). Generally, each displayed system changes just one equation,
although in certain cases, such as swapping equations, this rigor is re-
laxed.

Gaussian elimination. This algorithm seeks a target equivalent
system of equations which is a reduced echelon system (9), by ap-
plying to each algebraic step one of the three rules.

At each stage of the algebra an equivalent system is obtained. This means
that no solutions are gained or lost throughout the algebraic steps: the
original and target systems have exactly the same solutions.

The target reduced echelon system (9) has an easily–found Gaussian
parametric solution (10), which is reported as the general solution.

Theorem 3 (Gaussian Elimination)
Every linear system (1) has either no solutions or else it has the same solu-
tions as an equivalent reduced echelon system (9), obtained by applying the
three rules of swap, multiply and combination.
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A Gaussian Algorithm. An equation is processed if a lead vari-
able has been selected and that variable has been eliminated from all
other equations. Otherwise, the equation is unprocessed.

1. If an equation “0 = 0” appears, then discard it. If an equation
“0 = c” appears and c 6= 0, then the system is inconsistent (no
solution) and the algorithm terminates.

2. Identify among the variables names x1, . . . , xn a lead variable xr in
an unprocessed equation. Apply the multiply rule to insure leading
coefficient one. Apply the combination rule to eliminate variable xr

from all other equations.

3. Apply the swap rule to move this equation to the lowest position fol-
lowing the already-processed equations, but before the unprocessed
equations. Mark the equation as processed, e.g., replace xr by xr .

4. Repeat steps 1–3, until all equations have been processed once. Then
lead variables u1, . . . , um have been defined and the resulting system
is in reduced echelon form (9).

Uniqueness and the reduced echelon form. Unfortunately, the
Gaussian algorithm performed on a given system by two different persons
may result in two different reduced echelon systems. To make the answer
unique, attention has to be paid to the natural order of the variable list
x1, . . . , xn. Uniqueness results by adding one more critical step to the
Gaussian algorithm:

RREF. Always select a lead variable as the next possible

variable name in the original list order x1, . . . , xn, taken

from all possible unprocessed equations.

This extra step insures that the reduced echelon system (9) is in reduced
echelon form, that is, additionally (12), (13) are satisfied. The rref
requirement (14) is ignored here, because equation “0 = 0” is not listed
and equation “0 = 1” stops the algorithm.

The wording next possible must be used, because once a variable name
is used for a lead variable it may not be used again. The next variable
following the last–used lead variable, from the list x1, . . . , xn, may not
appear in any unprocessed equation, in which case it is a free variable.
The next variable name in the original list order is then tried as a lead
variable.

Avoiding fractions. Integer arithmetic should be used, when possi-
ble, to speed up hand computation in the Gaussian algorithm. To avoid
fractions, Gaussian algorithm step 2 may be modified to read with lead-

ing coefficient nonzero. The final division to obtain leading coefficient
one is then delayed until last.
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Detection of no solution. The appearance at any stage of the
algorithm of an equation like “0 = 1” signals no solutions, whereupon
the algorithm stops, and we report the system is inconsistent. The
reason for no solution is that “0 = 1” is false, therefore the equivalent
system at that stage cannot have a solution. By equivalence, the original
system cannot have a solution, either.

Basis. The terminology basis is used to refer to the k homogeneous
trial solutions that appear in the answer check, as applied to the Gaus-
sian parametric solution (10). Knowledge of these solutions is enough to
write out the general solution to the homogeneous system, hence the ter-
minology basis is appropriate. The reader is warned that many different
Gaussian parametric solutions are possible, for example, by re-ordering
the variable list. Therefore, a basis is not unique. Language like the ba-

sis is fundamentally incorrect. The reader should verify for the example
x + y + z = 0 and Gaussian parametric solution x = −t1 − t2, y = t1,
z = t2 that a basis is given by the two solutions

x = −1, y = 1, z = 0,
x = −1, y = 0, z = 1.

Nullspace. The word space in this context has meaning taken from
the phrases storage space and parking space – it has no geometrical
meaning whatsoever. The term nullspace refers to the set of all solu-
tions of the homogeneous system, identical to the set of all combinations
of the basis elements in (8). The nullspace remains unchanged regard-
less of the choice of basis. The reader should verify for the example
x + y + z = 0 and the two Gaussian parametric solutions x = −t1 − t2,
y = t1, z = t2 and x = t1, y = −t1 − t2, z = t2 that two possible bases
for the nullspace are given by the equations

{

x = −1, y = 1, z = 0,
x = −1, y = 0, z = 1.

and

{

x = 1, y = −1, z = 0,
x = 0, y = −1, z = 1.

Nullity and Rank. The terminology nullity applied to a system
of equations refers to the number of free variables appearing in any
equivalent reduced echelon system, which exactly matches the number
k of basis elements in relation (8). The rank of a system of equations
is correspondingly the number of lead variables. The fundamental
relation is

nullity + rank = number of variables.

In literature, nullity is referred to as the dimension of the nullspace.
The term dimension is a synonym for the number of free variables,
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which is exactly the number of parameters in a minimal parametric
solution for the linear system.

Unique solution. There is a unique solution to a system of equations
exactly when no free variables are present. This is identical to requir-
ing that the number n of variables equal the number of lead variables,
or rank = n.

Infinitely many solutions. The situation of infinitely many solu-
tions occurs exactly when there is at least one free variable to which
a parameter, say t1, is assigned. Since this parameter takes the values
−∞ < t1 < ∞, there are an infinity of solutions. The condition rank
less than n can replace a reference to the number of free variables.

Homogeneous systems are always consistent, therefore if the number of
variables exceeds the number of equations, then there is always one free
variable, and this gives the following basic result of linear algebra.

Theorem 4 (Existence of Infinitely Many Solutions)
A system of m × n linear homogeneous equations (2) with m < n has an
infinite number of solutions, hence it has a nonzero solution.

1 Example (Line of Intersection) Show that the parametric equations x =
2 − 6t, y = −1− t, z = 8t represent a line through (2,−1, 0) with tangent
−6~ı − ~ which is the line of intersection of the three planes

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(15)

Solution: Using t = 0 in the parametric solution shows that (2,−1, 0) is on

the line. The tangent is x′(t)~ı + y′(t)~ + z′(t)~k which computes to −6~ı − ~.
The details for showing the parametric solution satisfies the three equations
simultaneously:

LHS = x + 2y + z First equation left side.

= (2 − 6t) + 2(−1 − t) + 8t Substitute parametric solution.

= 0 Matches the RHS in (15).

LHS = 2x − 4y + z Second equation left side.

= 2(2 − 6t) − 4(−1 − t) + 8t Substitute.

= 8 Matches (15).

LHS = 3x − 2y + 2z Third equation left side.

= 3(2 − 6t) − 2(−1 − t) + 16t Substitute.

= 8 Matches (15).
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2 Example (Reduced Echelon System) Solve the system and interpret the
solution geometrically.

y + z = 1,
x + 2z = 3.

Solution: The parametric solution is a line:

x = 3 − 2t1,
y = 1 − t1,
z = t1, −∞ < t1 < ∞.

In standard xyz-coordinates, this line passes through (3, 1, 0) with tangent di-

rection −2~ı− ~ + ~k.

Details. To justify this solution, a reduced echelon system (9) is identified and
the easily–found Gaussian parametric solution (10) is obtained. The variable
list has six possible orderings, but the order of appearance y, z, x will be used
in this example.

y + z = 1,
x + 2z = 3.

Reduced echelon system, lead variables y, x and
free variable z.

y = 1 − z,
x = 3 − 2z,
z = t1.

Solve for lead variables y and x in terms of the
free variable z, then assign to z parameter t1.

y = 1 − t1,
x = 3 − 2t1,
z = t1.

Back-substitute for free varable z. This is the
Gaussian parametric solution. It is geometrically
a line, by Table 1.

Answer check. The displayed answer can be checked manually by substituting
the parametric solution into the equations y + z = 1, x + 2z = 3, as follows:

y + z = (1 − t1) + (t1)
= 1,

x + 2z = (3 − 2t1) + 2(t1)
= 3.

Therefore, the two equations are satisfied for all values of t1.

3 Example (Gaussian Elimination) Solve the system by applying the Gaus-
sian algorithm on page 290.

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Solution: The answer using the natural variable list order w, x, y, z is the
Gaussian parametric solution

w = 3 + t1 + t2,
x = −1 − t2,
y = t1,
z = t2, −∞ < t1, t2 < ∞.
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Details. The Gaussian algorithm will be applied. The details amount to apply-
ing the three rules swap, multiply and combination for equivalent equations
(page 289) to obtain a target reduced echelon system, whose Gaussian para-
metric solution matches the one reported above. For clarity, lead variables are
are marked with an asterisk (∗) and processed equations are marked with lead
variable enclosed in a box, e.g., w .

w + 2x − y + z = 1
w + 3x − y + 2z = 0

x + z = −1

Original system. Identify the vari-
able order as w, x, y, z.

w∗ + 2x − y + z = 1
0 + x + 0 + z = −1

x + z = −1

Choose lead variable w. Eliminate
w from other equations using the
combination rule.

w + 2x − y + z = 1
x∗ + z = −1

0 = 0

The w-equation is processed. Let
x be the next lead variable. Elim-
inate x from equation 3 using the
combination rule.

w + 0 − y − z = 3
x + z = −1

0 = 0

Eliminate x from equation 1 using
the combination rule. Mark the
x-equation as processed.

w − y − z = 3
x + z = −1

Discard equation “0 = 0.” Re-
duced echelon system found.

w = 3 + y + z
x = −1 − z
y = t1
z = t2

Solve for the lead variables w ,
x . Assign parameters t1, t2 to

the free variables y, z.

w = 3 + t1 + t2
x = −1 − t2
y = t1
z = t2

Back-substitute for the free vari-
ables to obtain the Gaussian para-
metric solution.

Answer check. The check will be performed according to the outline on page
286.

Step 1. The nonhomogeneous trial solution w = 3, x = −1, y = z = 0
is obtained by setting t1 = t2 = 0. It is required to satisfy the
nonhomogeneous system

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Step 2. The partial derivatives ∂t1 , ∂t2 are applied to the parametric solution
to obtain two homogeneous trial solutions w = 1, x = 0, y = 1,
z = 0 and w = 1, x = −1, y = 0, z = 1, which are required to
satisfy the homogeneous system

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 0.
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Each trial solution from Step 1 and Step 2 is checked by direct substitution.

4 Example (No solution) Verify by applying the Gaussian algorithm that the
system has no solution.

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 1.

Solution: The Gaussian algorithm (page 290) will be applied, using the three
rules swap, multiply and combination for equivalent equations (page 289).

w∗ + 2x − y + z = 0
w + 3x − y + 2z = 0

x + z = 1

Original system. Select variable or-
der w, x, y, z. Identify lead vari-
able w.

w + 2x − y + z = 0
0 + x + 0 + z = 0

x + z = 1

Eliminate w from other equations
using the combination rule. Mark
the w-equation processed.

w + 2x − y + z = 0
x∗ + z = 0

0 = 1

Identify lead variable x. Eliminate
x from the third equation using the
combination rule.

The appearance of the equation “0 = 1” signals no solution. The logic: if
the original system has a solution, then so does the present equivalent system,
hence 0 = 1, a contradiction. The Gaussian algorithm stops, because of the
inconsistent system containing the false equation “0 = 1.”

5 Example (Reduced Echelon form) Find an equivalent system in reduced
echelon form using the Gaussian algorithm and the RREF step (page 290 ).

x1 + 2x2 − x3 + x4 = 1,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = −1.

Solution: The answer using the natural variable list order x1, x2, x2, x4 is the
reduced echelon system in reduced echelon form (briefly, rref form)

x1 − x3 − x4 = 3
x2 + x4 = −1

The Gaussian parametric solution of this system is

x1 = 3 + t1 + t2,
x2 = −1 − t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 < ∞.

The details are exactly the same as Example 3, with w = x1, x = x2, y = x3,
z = x4.

The answer can be checked using maple. The output below duplicates the
system reported above, plus a single 0 = 0 equation at the end.
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with(linalg):

A:=matrix([[1,2,-1,1,1],[1,3,-1,2,0],[0,1,0,1,-1]]);

R:=rref(A); geneqns(R,[x[1],x[2],x[3],x[4],-1]);

Proof of Theorem 1: The proof will follow from the lemma and theorem
below.

Lemma 1 (Unique Representation) If a set of parametric equations (4) satisfies
(5), (6) and (7), then each solution of linear system (1) is given by (4) for exactly
one set of parameter values.

Proof: Let a solution of system (1) be given by (4) for two sets of parameters
t1, . . . , tk and t1, . . . , tk. By (7), tj = xij

= tj for 1 ≤ j ≤ k, therefore the
parameter values are the same.

Theorem 5 (Minimal Parametric Solutions)
Let linear system (1) have a parametric solution satisfying (4), (5), (6). Then (4)
has the fewest possible parameters if and only if each solution of linear system (1)
is given by (4) for exactly one set of parameter values.

Proof: Suppose first that a general solution (4) is given with the least number
k of parameters, but contrary to the theorem, there are two ways to represent
some solution, with corresponding parameters r1, . . . , rk and also s1, . . . , sk.
Subtract the two sets of parametric equations, thus eliminating the symbols x1,
. . . , xn, to obtain:

c11(r1 − s1) + · · · + c1k(rk − sk) = 0,
...

cn1(r1 − s1) + · · · + cnk(rk − sk) = 0.

Relabel the variables and constants so that r1 − s1 6= 0, possible since the two
sets of parameters are supposed to be different. Divide the preceding equations
by r1 − s1 and solve for the constants c11, . . . , cn1. This results in equations

c11 = c12w2 + · · · + c1kwk,
...

cn1 = cn2w2 + · · · + cnkwk,

where wj = −
rj−sj

r1−s1

, 2 ≤ j ≤ k. Insert these relations into (4), effectively
eliminating the symbols c11, . . . , cn1, to obtain

x1 = d1 + c12(t2 + w2t1) + · · · + c1k(tk + wkt1),
x2 = d2 + c22(t2 + w2t1) + · · · + c2k(tk + wkt1),

...
xn = dn + cn2(t2 + w2t1) + · · · + cnk(tk + wkt1).

Let t1 = 0. The remaining parameters t2, . . . , tk are fewer parameters that
describe all solutions of the system, a contradiction to the definition of k. This
completes the proof of the first half of the theorem.
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To prove the second half of the theorem, assume that a parametric solution (4)
is given which represents all possible solutions of the system and in addition
each solution is represented by exactly one set of parameter values. It will be
established that the number k in (4) is the least possible parameter count.

Suppose not. Then there is a second parametric solution

x1 = e1 + b11v1 + · · · + b1`v`,
...

xn = en + bn1v1 + · · · + bn`v`,

(16)

where ` < k and v1, . . . , v` are the parameters. It is assumed that (16) repre-
sents all solutions of the linear system.

We shall prove that the solutions for zero parameters in (4) and (16) can be
taken to be the same, that is, another parametric solution is given by

x1 = d1 + b11s1 + · · · + b1`s`,
...

xn = dn + bn1s1 + · · · + bn`s`.

(17)

The idea of the proof is to substitute x1 = d1, . . . , xn = dn into (16) for
parameters r1, . . . , rn. Then solve for e1, . . . , en and replace back into (16) to
obtain

x1 = d1 + b11(v1 − r1) + · · · + b1`(v` − r`),
...

xn = dn + bn1(v1 − r1) + · · · + bn`(v` − r`).

Replacing parameters sj = vj − rj gives (17).

From (4) it is known that x1 = d1 + c11, . . . , xn = dn + cn1 is a solution. By
(17), there are constants r1, . . . , r` such that (we cancel d1, . . . , dn from both
sides)

c11 = b11r1 + · · · + b1`r`,
...

cn1 = bn1r1 + · · · + bn`r`.

If r1 through r` are all zero, then the solution just referenced equals d1, . . . ,
dn, hence (4) has a solution that can be represented with parameters all zero
or with t1 = 1 and all other parameters zero, a contradiction. Therefore, some
ri 6= 0 and we can assume by renumbering that r1 6= 0. Return now to the last
system of equations and divide by r1 in order to solve for the constants b11,
. . . , bn1. Substitute the answers back into (17) in order to obtain parametric
equations

x1 = d1 + c11w1 + b12w2 + · · · + b1`w`,
...

xn = dn + cn1w1 + bn2w2 + · · · + bn`w`,

where w1 = s1, wj = sj − rj/r1. Given s1, . . . , s` are parameters, then so are
w1, . . . , w`.

This process can be repeated for the solution x1 = d1 + c12, . . . , xn = dn + cn2.
We assert that for some index j, 2 ≤ j ≤ `, constants bij , . . . , bnj in the previous
display can be isolated, and the process of replacing symbols b by c continued.
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If not, then w2 = · · · = w` = 0. Then solution x1, . . . , xn has two distinct
representations in (4), first with t2 = 1 and all other tj = 0, then with t1 = w1

and all other tj = 0. A contradiction results, which proves the assertion. After
` repetitions of this replacement process, we find a parametric solution

x1 = d1 + c11u1 + c12u2 + · · · + c1`u`,
...

xn = dn + cn1u1 + cn2u2 + · · · + cn`u`,

in some set of parameters u1, . . . , u`.

However, ` < k, so at least the solution x1 = d1+c1k, . . . , xn = dn+cnk remains
unused by the process. Insert this solution into the previous display, valid for
some parameters u1, . . . , u`. The relation says that the solution x1 = d1, . . . ,
xn = dn in (4) has two distinct sets of parameters, namely t1 = u1, . . . , t` = u`,
tk = −1, all others zero, and also all parameters zero, a contradiction. This
completes the proof of the theorem.

Exercises 8.1

Planar System. Solve the xy–system
and interpret the solution geometri-
cally.

1.
x + y = 1,

y = 1.

2.
x + y = −1,
x = 3.

3.
x + y = 1,
x + 2y = 2.

4.
x + y = 1,
x + 2y = 3.

5.
x + y = 1,

2x + 2y = 2.

6.
2x + y = 1,
6x + 3y = 3.

7.
x − y = 1,

−x − y = −1.

8.
2x − y = 1,
x − 0.5y = 0.5.

9.
x = 1,
x = 2.

10.
− y = 1,
− y = 2.

11.
x + y = 1,
x + y = 2.

12.
x − y = 1,
x − y = 0.

Reduced Echelon System. Solve the
xyz–system and interpret the solution
geometrically.

13.
y + z = 1,
x + 2z = 2.

14.
x + z = 1,
y + 2z = 4.

15.
y + z = 1,
x + 3z = 2.

16.
x + z = 1,
y + z = 5.

17.
x + z = 1,

2x + 2z = 2.

18.
x + y = 1,

3x + 3y = 3.

19. x + y + z = 1.

20. x + 2y + 4z = 0.
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Homogeneous System. Solve the
xyz–system using the Gaussian algo-
rithm and variable order x, y, z.

21.

y + z = 0,
2x + 2z = 0,
x + z = 0.

22.

2x + y + z = 0,
x + 2z = 0,
x + y − z = 0.

23.

x + y + z = 0,
2x + 2z = 0,
x + z = 0.

24.

x + y + z = 0,
2x + 2z = 0,
3x + y + 3z = 0.

Nonhomogeneous System. Solve
the system using the Gaussian algo-
rithm and variable order x, y, z.

25.

y + z = 1,
2x + 2z = 2,
x + z = 1.

26.

2x + y + z = 1,
x + 2z = 2,
x + y − z = −1.

27.

x + y + z = 0,
2x + 2z = 0,
x + z = 0.

28.

x + y + z = 0,
2x + 2z = 0,
3x + y + 3z = 0.

Nonhomogeneous System. Solve
the system using the Gaussian algo-
rithm and variable order y, z, u, v.

29.

y + z + 4u + 8v = 10,
2z − u + v = 10,

2y − u + 5v = 10.

30.

y + z + 4u + 8v = 10,
2z − 2u + 2v = 0,

y + 3z + 2u + 5v = 5.

31.

y + z + 4u + 8v = 1,
2z − 2u + 4v = 0,

y + 3z + 2u + 6v = 1.

32.

y + 3z + 4u + 8v = 1,
2z − 2u + 4v = 0,

y + 3z + 2u + 6v = 1.

Nullspace. Solve using the Gaus-
sian algorithm and variable order y, z,
u, v. Report the values of the nul-

lity and rank in the equation nul-

lity+rank=4.

33.

y + z + 4u + 8v = 0,
2z − u + v = 0,

2y − u + 5v = 0.

34.

y + z + 4u + 8v = 0,
2z − 2u + 2v = 0,

y − z + 6u + 6v = 0.

35.

y + z + 4u + 8v = 0,
2z − 2u + 4v = 0,

y + 3z + 2u + 6v = 0.

36.

y + 3z + 4u + 8v = 0,
2z − 2u + 4v = 0,

y + 3z + 2u + 12v = 0.

RREF. For each 3 × 5 homogeneous
system, (a) solve using the Gaussian
algorithm and variable order x, y, z, u,
v, (b) Report an equivalent set of equa-
tions in reduced echelon form (rref).

37.

x + y + z + 4u + 8v = 0,
−x + 2z − 2u + 2v = 0,

y − z + 6u + 6v = 0.

38.

x + y + z + 4u + 8v = 0,
− 2z − u + v = 0,

2y − u + 5v = 0.

39.

y + z + 4u + 8v = 0,
x + 2z − 2u + 4v = 0,

2x + y + 3z + 2u + 6v = 0.

40.

x + y + 3z + 4u + 8v = 0,
2x + 2z − 2u + 4v = 0,
x − y + 3z + 2u + 12v = 0.


