Chapter 4

First Order Numerical Methods

Contents

4.1 Solving $y' = F(x)$ Numerically 209
4.2 Solving $y' = f(x, y)$ Numerically 221
4.3 Error in Numerical Methods 229
4.4 Computing π, $\ln 2$ and e 235
4.5 Earth to the Moon 241
4.6 Skydiving . 247
4.7 Lunar Lander . 251
4.8 Comets . 256

4.1 Solving $y' = F(x)$ Numerically

Studied here is the creation of numerical tables and graphics for the solution of the initial value problem

$$y' = F(x), \quad y(x_0) = y_0.$$ (1)

To illustrate, consider the initial value problem

$$y' = 3x^2 - 1, \quad y(0) = 2.$$

Quadrature gives the explicit symbolic solution

$$y(x) = x^3 - x + 2.$$

In Figure 1, evaluation of $y(x)$ from $x = 0$ to $x = 1$ in increments of 0.1 gives the xy-table, whose entries represent the dots for the connect-the-dots graphic.
Figure 1. A table of \(xy \)-values for \(y = x^3 - x + 2 \).
The graphic represents the table’s rows as dots, which are joined to make the connect-the-dots graphic.

The interesting case is when quadrature in (1) encounters an integral \(\int_{x_0}^{x} F(t) \, dt \) that cannot be evaluated to provide an explicit symbolic equation for \(y(x) \). Nevertheless, \(y(x) \) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular, trapezoidal and Simpson; see page 215 for a review of the three rules. The ideas lead to the numerical methods of Euler, Heun and Runge-Kutta, which appear later in this chapter.

How to make an \(xy \)-table. Given \(y' = F(x), y(x_0) = y_0 \), a table of \(xy \)-values is created as follows. The \(x \)-values are equally spaced a distance \(h > 0 \) apart. Each \(x, y \) pair in the table represents a dot in the connect-the-dots graphic of the explicit solution

\[
y(x) = y_0 + \int_{x_0}^{x} F(t) \, dt.
\]

First table entry. The initial condition \(y(x_0) = y_0 \) identifies two constants \(x_0, y_0 \) to be used for the first table entry. For example, \(y(0) = 2 \) identifies \(X = 0, Y = 2 \).

Second table entry. The second table pair \(X, Y \) is computed from the first table pair \(x_0, y_0 \) and a recurrence. The \(X \)-value is given by \(X = x_0 + h \), while the \(Y \)-value is given by the numerical integration method being used, in accordance with Table 1 (the table is justified on page 218).

Table 1. Three numerical integration methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular Rule</td>
<td>(Y = y_0 + h F(x_0))</td>
</tr>
<tr>
<td>Trapezoidal Rule</td>
<td>(Y = y_0 + \frac{h}{2} (F(x_0) + F(x_0 + h)))</td>
</tr>
<tr>
<td>Simpson’s Rule</td>
<td>(Y = y_0 + \frac{h}{6} (F(x_0) + 4F(x_0 + h/2) + F(x_0 + h)))</td>
</tr>
</tbody>
</table>

Third and higher table entries. They are computed by letting \(x_0, y_0 \) be the current table entry, then the next table entry \(X, Y \) is found exactly as outlined above for the second table entry.
4.1 Solving \(y' = F(x) \) Numerically

It is expected, and normal, to compute the table entries using computer assist. In simple cases, a calculator will suffice. If \(F \) is complicated or Simpson’s rule is used, then a computer algebra system or a numerical laboratory is recommended. See Example 2, page 212.

How to make a connect-the-dots graphic. To illustrate, consider the \(xy \)-pairs below, which are to represent the dots in the connect-the-dots graphic.

\[
\begin{align*}
(0.0, 2.000), & (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664), \\
(0.5, 1.625), & (0.6, 1.616), (0.7, 1.643), (0.8, 1.712), (0.9, 1.829), \\
(1.0, 2.000).
\end{align*}
\]

Hand drawing. The method, unchanged from high school mathematics courses, is to plot the points as dots on an \(xy \)-coordinate system, then connect the dots with line segments. See Figure 2.

![Figure 2. A computer-generated graphic made to simulate a hand-drawn connect-the-dots graphic.](image)

Computer algebra system graphic. The computer algebra system maple has a primitive syntax especially made for connect-the-dots graphics. Below, Dots is a list of \(xy \)-pairs.

```
# Maple V.1
Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],
       [0.3, 1.727], [0.4, 1.664], [0.5, 1.625],
       [0.6, 1.616], [0.7, 1.643], [0.8, 1.712],
       [0.9, 1.829], [1.0, 2.000]:
plot([Dots]);
```

The plotting of points only can be accomplished by adding options into the plot command: type=point and symbol=circle will suffice.

Numerical laboratory graphic. The computer programs matlab, octave and scilab provide primitive plotting facilities, as follows.

```
X=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]
Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625, 1.616, 1.643, 1.712, 1.829, 2.000]
plot(X,Y)
```

Example (Rectangular Rule) Consider \(y' = 3x^2 - 2x \), \(y(0) = 0 \). Apply the rectangular rule to make an \(xy \)-table for \(y(x) \) from \(x = 0 \) to \(x = 2 \) in
steps of \(h = 0.2 \). Graph the approximate solution and the exact solution
\(y(x) = x^3 - x^2 \) for \(0 \leq x \leq 2 \).

Solution: The exact solution \(y = x^3 - x^2 \) is verified directly, by differentiation. It was obtained by quadrature applied to \(y' = 3x^2 - 2x \), \(y(0) = 0 \).

The first table entry 0, 0 is used to obtain the second table entry \(X = 0.2 \), \(Y = 0 \) as follows.

\[
x_0 = 0, \quad y_0 = 0 \\
X = x_0 + h = 0.2, \\
Y = y_0 + hF(x_0) = 0 + 0.2(0).
\]

The remaining 9 rows of the table are completed by calculator, following the pattern above for the second table entry. The result:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)-rect</th>
<th>(y)-exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.2</td>
<td>0.000</td>
<td>-0.032</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.056</td>
<td>-0.096</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.120</td>
<td>-0.144</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.144</td>
<td>-0.128</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.080</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The \(xy \)-values from the table are used to obtain the comparison plot in Figure 3.

\[F(x) = 3x^2 - 2x. \]

2 Example (Trapezoidal Rule) Consider \(y' = \cos x + 2x \), \(y(0) = 0 \). Apply both the rectangular and trapezoidal rules to make an \(xy \)-table for \(y(x) \) from \(x = 0 \) to \(x = \pi \) in steps of \(h = \pi/10 \). Compare the two approximations in a graphic for \(0 \leq x \leq \pi \).

Solution: The exact solution \(y = \sin x + x^2 \) is verified directly, by differentiation. It will be seen that the trapezoidal solution is nearly identical, graphically, to the exact solution.

The table will have 11 rows. The three columns are \(x \), \(y \)-rectangular and \(y \)-trapezoidal. The first table entry 0, 0, 0 is used to obtain the second table entry 0.1\(\pi \), 0.31415927, 0.40516728 as follows.

Rectangular rule second entry.
4.1 Solving $y' = F(x)$ Numerically

$Y = y_0 + h F(x_0)$

Rectangular rule.

$= 0 + h (\cos(0) + 2(0))$

Use $F(x) = \cos x + 2x$, $x_0 = y_0 = 0$.

$= 0 + h$.00000$

Use $h = 0.1\pi = 0.31415927$.

$y_0 = 0$.

Trapezoidal rule second entry.

$Y = y_0 + 0.5 h (F(x_0) + F(x_0 + h))$

Trapezoidal rule.

$= 0 + 0.05 \pi (\cos 0 + \cos 0 + 2h)$

Use $x_0 = y_0 = 0$, $F(x) = \cos x + 2x$.

$= 0 + 0$.31415927

Use $h = 0.1\pi$.

The remaining 9 rows of the table are completed by calculator, following the pattern above for the second table entry. The result:

Table 3. Rectangular and trapezoidal solutions for $y' = \cos x + 2x$, $y(0) = 0$ on $0 \leq x \leq \pi$, step size $h = 0.1\pi$.

<table>
<thead>
<tr>
<th>x</th>
<th>y-rect</th>
<th>y-trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.314159</td>
<td>0.314159</td>
<td>0.405167</td>
</tr>
<tr>
<td>0.628319</td>
<td>0.810335</td>
<td>0.977727</td>
</tr>
<tr>
<td>0.942478</td>
<td>1.459279</td>
<td>1.690617</td>
</tr>
<tr>
<td>1.256637</td>
<td>2.266313</td>
<td>2.522358</td>
</tr>
<tr>
<td>1.570796</td>
<td>3.122762</td>
<td>3.459163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y-rect</th>
<th>y-trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.884956</td>
<td>4.109723</td>
<td>4.496279</td>
</tr>
<tr>
<td>2.199115</td>
<td>5.196995</td>
<td>5.638458</td>
</tr>
<tr>
<td>2.513274</td>
<td>6.394081</td>
<td>6.899490</td>
</tr>
<tr>
<td>2.827433</td>
<td>7.719058</td>
<td>8.300851</td>
</tr>
<tr>
<td>3.141593</td>
<td>9.196803</td>
<td>9.869604</td>
</tr>
</tbody>
</table>

Figure 4. Comparison plot on $0 \leq x \leq \pi$ of the rectangular (solid) and trapezoidal (dotted) solutions for $y' = \cos x + 2x$, $y(0) = 0$ for $h = 0.1\pi$.

Computer algebra system. The Maple implementation for Example 2 appears below. Part of the interface is repetitive execution of a group, which is used here to avoid loop constructs. The code produces lists Dots1 and Dots2 which contain Rectangular (left panel) and Trapezoidal (right panel) approximations.

```
# Rectangular algorithm
# Group 1, initialize.
F:=x->evalf(cos(x) + 2*x):
x0:=0:y0:=0:h:=0.1*Pi:
Dots1:=[x0,y0]:

# Group 2, repeat 10 times
Y:=y0+h*F(x0):
x0:=x0+h:
y0:=evalf(Y):
Dots1:=Dots1,[x0,y0]:

# Group 3, plot.
plot([Dots1]);
```

```
# Trapezoidal algorithm
# Group 1, initialize.
F:=x->evalf(cos(x) + 2*x):
x0:=0:y0:=0:h:=0.1*Pi:
Dots2:=[x0,y0]:

# Group 2, repeat 10 times
Y:=y0+h*(F(x0)+F(x0+h))/2:
x0:=x0+h:
y0:=evalf(Y):
Dots2:=Dots2,[x0,y0]:

# Group 3, plot.
plot([Dots2]);
```
3 Example (Simpson’s Rule) Consider \(y' = e^{-x^2}, \ y(0) = 0 \). Apply both the rectangular and Simpson rules to make an \(xy \)-table for \(y(x) \) from \(x = 0 \) to \(x = 1 \) in steps of \(h = 0.1 \). In the table, include values for the exact solution \(y(x) = \frac{\sqrt{\pi}}{2} \text{erf}(x) \). Compare the two approximations in a graphic for \(0.8 \leq x \leq 1.0 \).

Solution: The error function \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \) is a library function available in maple, mathematica, matlab and other computing platforms. It is known that the integral cannot be expressed in terms of elementary functions.

The \(xy \)-table. There will be 11 rows, for \(x = 0 \) to \(x = 1 \) in steps of \(h = 0.1 \). There are four columns: \(x, y\)-rectangular, \(y\)-Simpson, \(y\)-exact.

The first row arises from \(y(0) = 0 \), giving the four entries 0, 0, 0, 0. It will be shown how to obtain the second row by calculator methods, for the two algorithms rectangular and Simpson.

Rectangular rule second entry.
\[
Y_1 = y_0 + hF(x_0) = 0 + h(e^0) = 0.1.
\]

Simpson rule second entry.
\[
Y_2 = y_0 + \frac{h}{6}(F(x_0) + 4F(x_1) + F(x_2)) = 0 + \frac{h}{6}(e^0 + 4e^{0.5} + e^1) = 0.09966770540.
\]

Exact solution second entry.
\[
Y_3 = \text{Exact}(x_0+h);
\]
\(Y_3 := 0.09966766428 \)

Table 4. Rectangular and Simpson solutions for \(y' = e^{-x^2}, \ y(0) = 0 \) on \(0 \leq x \leq \pi \), step size \(h = 0.1 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)-rect</th>
<th>(y)-Simp</th>
<th>(y)-exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.10000000</td>
<td>0.09966771</td>
<td>0.09966766</td>
</tr>
<tr>
<td>0.2</td>
<td>0.19900498</td>
<td>0.19736511</td>
<td>0.19736503</td>
</tr>
<tr>
<td>0.3</td>
<td>0.29508393</td>
<td>0.29123799</td>
<td>0.29123788</td>
</tr>
<tr>
<td>0.4</td>
<td>0.38647705</td>
<td>0.37965297</td>
<td>0.37965284</td>
</tr>
<tr>
<td>0.5</td>
<td>0.47169142</td>
<td>0.46128114</td>
<td>0.46128101</td>
</tr>
<tr>
<td>0.6</td>
<td>0.54957150</td>
<td>0.53515366</td>
<td>0.53515353</td>
</tr>
<tr>
<td>0.7</td>
<td>0.61933914</td>
<td>0.60068579</td>
<td>0.60068567</td>
</tr>
<tr>
<td>0.8</td>
<td>0.68060178</td>
<td>0.65766996</td>
<td>0.65766986</td>
</tr>
<tr>
<td>0.9</td>
<td>0.73333102</td>
<td>0.70624159</td>
<td>0.70624152</td>
</tr>
<tr>
<td>1.0</td>
<td>0.77781682</td>
<td>0.74682418</td>
<td>0.74682413</td>
</tr>
</tbody>
</table>
4.1 Solving \(y' = F(x) \) Numerically

Computer algebra system. The *maple* implementation for Example 3 appears below. Part of the interface is repetitive execution of a group, which avoids loop constructs. The code produces two lists `Dots1` and `Dots2` which contain Rectangular (left panel) and Simpson (right panel) approximations.

```maple
# Rectangular algorithm
# Group 1, initialize.
F := x -> evalf(exp(-x*x));
x0 := 0; y0 := 0; h := 0.1;
Dots1 := [x0, y0];

# Group 2, repeat 10 times
Y := evalf(y0 + h * F(x0));
x0 := x0 + h; y0 := Y;
Dots1 := Dots1, [x0, y0];

# Group 3, plot.
plot([Dots1]);

# Simpson algorithm
# Group 1, initialize.
F := x -> evalf(exp(-x*x));
x0 := 0; y0 := 0; h := 0.1;
Dots2 := [x0, y0];

# Group 2, repeat 10 times
Y := evalf(y0 + h * (F(x0) + 4 * F(x0+h/2) + F(x0+h))/6);
x0 := x0 + h; y0 := Y;
Dots2 := Dots2, [x0, y0];

# Group 3, plot.
plot([Dots2]);
```

Review of Numerical Integration

Reproduced here are calculus topics: the **rectangular rule**, the **trapezoidal rule** and **Simpson’s rule** for the numerical approximation of an integral \(\int_a^b F(x) \, dx \). The approximations are valid for \(b - a \) small. Larger intervals must be subdivided, then the rule applies to the small subdivisions.

Rectangular Rule. The approximation uses Euler’s idea of replacing the integrand by a constant. The value of the integral is approximately the area of a rectangle of width \(b - a \) and height \(F(a) \).

\[
\int_a^b F(x) \, dx \approx (b - a)F(a).
\]
Trapezoidal Rule. The rule replaces the integrand $F(x)$ by a linear function $L(x)$ which connects the planar points $(a, F(a))$, $(b, F(b))$. The value of the integral is approximately the area under the curve L, which is the area of a trapezoid.

\[
\int_a^b F(x)dx \approx \frac{b-a}{2} (F(a) + F(b)).
\] (3)

Simpson’s Rule. The rule replaces the integrand $F(x)$ by a quadratic polynomial $Q(x)$ which connects the planar points $(a, F(a))$, $((a + b)/2, F((a + b)/2))$, $(b, F(b))$. The value of the integral is approximately the area under the quadratic curve Q.

\[
\int_a^b F(x)dx \approx \frac{b-a}{6} \left(F(a) + 4F \left(\frac{a+b}{2} \right) + F(b) \right).
\] (4)

Simpson’s Polynomial Rule. If $Q(x)$ is constant, or a linear, quadratic or cubic polynomial, then (proof on page 217)

\[
\int_a^b Q(x)dx = \frac{b-a}{6} \left(Q(a) + 4Q \left(\frac{a+b}{2} \right) + Q(b) \right).
\] (5)

Integrals of linear, quadratic and cubic polynomials can be evaluated exactly using Simpson’s polynomial rule (5); see Example 4, page 216.

Remarks on Simpson’s Rule. The right side of (4) is exactly the integral of $Q(x)$, which is evaluated by equation (5). The appearance of F instead of Q on the right in equation (4) is due to the relations $Q(a) = F(a)$, $Q((a+b)/2) = F((a+b)/2)$, $Q(b) = F(b)$, which arise from the requirement that Q connect three points along curve F.

The quadratic interpolation polynomial $Q(x)$ is determined uniquely from the three data points; see Quadratic Interpolant, page 217, for a formula for Q and a derivation. It is interesting that Simpson’s rule depends only upon the uniqueness and not upon the actual formula for Q!

4 Example (Polynomial Quadrature) Apply Simpson’s polynomial rule (5) to verify $\int_1^2 (x^3 - 16x^2 + 4)dx = -355/12$.

Solution: The application proceeds as follows:

\[
I = \int_1^2 Q(x)dx
\]

Evaluate integral I using $Q(x) = x^3 - 16x^2 + 4$.

\[
\]
4.1 Solving $y' = F(x)$ Numerically

\[= \frac{2 - 1}{6} (Q(1) + 4Q(3/2) + Q(2)) \quad \text{Apply Simpson's polynomial rule (5)}. \]
\[= \frac{1}{6} (-11 + 4(-229/8) - 52) \quad \text{Use } Q(x) = x^3 - 16x^2 + 4. \]
\[= -\frac{355}{12}. \quad \text{Equality verified.} \]

Simpson's Polynomial Rule Proof. Let $Q(x)$ be a linear, quadratic or cubic polynomial. It will be verified that

\[\int_a^b Q(x) \, dx = \frac{b - a}{6} \left(Q(a) + 4Q \left(\frac{a + b}{2} \right) + Q(b) \right). \tag{6} \]

If the formula holds for polynomial Q and c is a constant, then the formula also holds for the polynomial cQ. Similarly, if the formula holds for polynomials Q_1 and Q_2, then it also holds for $Q_1 + Q_2$. Consequently, it suffices to show that the formula is true for the special polynomials 1, x, x^2 and x^3, because then it holds for all combinations $Q(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$.

Only the special case $Q(x) = x^3$ will be treated here. The other cases are left to the exercises. The details:

\[
\text{RHS} = \frac{b - a}{6} \left(Q(a) + 4Q \left(\frac{a + b}{2} \right) + Q(b) \right) \quad \text{Evaluate the right side of equation (6).} \\
= \frac{b - a}{6} \left(a^3 + \frac{1}{2} (a + b)^3 + b^3 \right) \quad \text{Substitute } Q(x) = x^3. \\
= \frac{b - a}{6} \left(\frac{3}{2} a^3 + a^2 b + ab^2 + b^3 \right) \quad \text{Expand } (a + b)^3. \text{ Simplify.} \\
= \frac{1}{4} (b^4 - a^4), \quad \text{Multiply and simplify.} \]

\[
\text{LHS} = \int_a^b Q(x) \, dx \quad \text{Evaluate the left hand side (LHS) of equation (6).} \\
= \int_a^b x^3 \, dx \quad \text{Substitute } Q(x) = x^3. \\
= \frac{1}{4} (b^4 - a^4) \quad \text{Evaluate.} \\
= \text{RHS.} \quad \text{Compare with the RHS.} \\
\]

This completes the proof of Simpson’s polynomial rule.

Quadratic Interpolant Q. Given $a < b$ and the three data points (a, Y_0), $((a + b)/2, Y_1)$, (b, Y_2), then there is a unique quadratic curve $Q(X)$ which connects the points, given by

\[Q(X) = Y_0 + (4Y_1 - Y_2 - 3Y_0) \frac{X - a}{b - a} \]
\[+ (2Y_2 + 2Y_0 - 4Y_1) \frac{(X - a)^2}{(b - a)^2}. \tag{7} \]

Proof: The term *quadratic* is meant loosely: it can be a constant or linear function as well.
Lemma 1 Given y_1 and y_2, define $A = y_2 - y_1$, $B = 2y_1 - y_2$. Then the quadratic $y = x(Ax + B)$ fits the data items $(0, 0)$, $(1, y_1)$, $(2, 2y_2)$.

Lemma 2 Given Y_0, Y_1 and Y_2, define $y_1 = Y_1 - Y_0$, $y_2 = \frac{1}{2}(Y_2 - Y_0)$, $A = y_2 - y_1$, $B = 2y_1 - y_2$ and $x = 2(X - a)/(b - a)$. Then quadratic $Y(X) = Y_0 + x(Ax + B)$ fits the data items (a, Y_0), $((a + b)/2, Y_1)$, (b, Y_2).

To verify the first lemma, the formula $y = x(Ax + B)$ is tested to go through the given data points $(0, 0)$, $(1, y_1)$ and $(2, 2y_2)$. For example, the last pair is tested by the steps

\[
y(2) = 2(2A + B) = 4y_2 - 4y_1 + 4y_1 - 2y_2 = 2y_2.
\]

Applying $y = x(Ax + B)$ with $x = 2$, use $A = y_2 - y_1$ and $B = 2y_1 - y_2$. Therefore, the quadratic fits data item $(2, 2y_2)$.

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the first lemma, $Y = Y_0 + y$. The data fit is checked as follows:

\[
Y(b) = Y_0 + y(2) = Y_0 + 2y_2 = Y_2.
\]

Applying formulas $Y(X) = Y_0 + y(x)$, $y(x) = x(Ax + B)$ with $X = b$ and $x = 2$.

The other two items are checked similarly, details omitted here. This completes the proof of the two lemmas. The formula for Q is obtained from the second lemma as $Q = Y_0 + Bx + Ax^2$ with substitutions for A, B and x performed to obtain the given equation for Q in terms of Y_0, Y_1, Y_2, a, b and X.

Justification of Table 1: The method of quadrature applied to $y' = F(x)$, $y(x_0) = y_0$ gives an explicit solution $y(x)$ involving the integral of F. Specialize this solution formula to $x = x_0 + h$ where $h > 0$. Then

\[
y(x_0 + h) = y_0 + \int_{x_0}^{x_0 + h} F(t)\,dt.
\]

All three methods in Table 1 are derived by replacement of the integral above by the corresponding approximation taken from the rectangular, trapezoidal or

What's a lemma? It's a helper theorem, used to dissect long proofs into short pieces.
Simpson method on page 215. For example, the trapezoidal method gives
\[
\int_{x_0}^{x_0+h} F(t) dt \approx \frac{h}{2} \left(F(x_0) + F(x_0 + h) \right),
\]
whereupon replacement into the formula for \(y\) gives the entry in Table 1 as
\[
Y \approx y(x_0 + h) = y_0 + \frac{h}{2} \left(F(x_0) + F(x_0 + h) \right).
\]
This completes the justification of Table 1.

Exercises 4.1

Connect-the-Dots. Make a numerical table of 6 rows and a connect-the-dots graphic for the following.

1. \(y = 2x + 5, \ x = 0 \) to \(x = 1\)

2. \(y = 3x + 5, \ x = 0 \) to \(x = 2\)

3. \(y = 2x^2 + 5, \ x = 0 \) to \(x = 1\)

4. \(y = 3x^2 + 5, \ x = 0 \) to \(x = 2\)

5. \(y = \sin x, \ x = 0 \) to \(x = \pi/2\)

6. \(y = \sin 2x, \ x = 0 \) to \(x = \pi/4\)

7. \(y = x \ln |1 + x|, \ x = 0 \) to \(x = 2\)

8. \(y = x \ln |1 + 2x|, \ x = 0 \) to \(x = 1\)

9. \(y = xe^x, \ x = 0 \) to \(x = 1\)

10. \(y = x^2e^x, \ x = 0 \) to \(x = 1/2\)

Rectangular Rule. Apply the rectangular rule to make an \(xy\)-table for \(y(x)\) with 11 rows and step size \(h = 0.1\). Graph the approximate solution and the exact solution. Follow example 1.

11. \(y' = 2x, \ y(0) = 5\)

12. \(y' = 3x^2, \ y(0) = 5\)

13. \(y' = 3x^2 + 2x, \ y(0) = 4\)

14. \(y' = 3x^2 + 4x^3, \ y(0) = 4\)

15. \(y' = \sin x, \ y(0) = 1\)

16. \(y' = 2 \sin 2x, \ y(0) = 1\)

17. \(y' = \ln(1 + x), \ y(0) = 1\). Exact \((1 + x) \ln |1 + x| + 1 - x\).

18. \(y' = 2 \ln(1 + 2x), \ y(0) = 1\). Exact \((1 + 2x) \ln |1 + 2x| + 1 - 2x\).

19. \(y' = xe^x, \ y(0) = 1\). Exact \(xe^x - e^x + 2\).

20. \(y' = 2x^2e^{2x}, \ y(0) = 4\). Exact \(2x^2e^x - 4xe^x + 4e^x\).

Trapezoidal Rule. Apply the trapezoidal rule to make an \(xy\)-table for \(y(x)\) with 6 rows and step size \(h = 0.2\). Graph the approximate solution and the exact solution. Follow example 2.

21. \(y' = 2x, \ y(0) = 1\).

22. \(y' = 3x^2, \ y(0) = 1\).

23. \(y' = 3x^2 + 2x, \ y(0) = 2\).

24. \(y' = 3x^2 + 4x^3, \ y(0) = 2\).

25. \(y' = \sin x, \ y(0) = 4\).

26. \(y' = 2 \sin 2x, \ y(0) = 4\).

27. \(y' = \ln(1 + x), \ y(0) = 1\). Exact \((1 + x) \ln |1 + x| + 1 - x\).

28. \(y' = 2 \ln(1 + 2x), \ y(0) = 1\). Exact \((1 + 2x) \ln |1 + 2x| + 1 - 2x\).

29. \(y' = xe^x, \ y(0) = 1\). Exact \(xe^x - e^x + 2\).

30. \(y' = 2x^2e^{2x}, \ y(0) = 4\). Exact \(2x^2e^x - 4xe^x + 4e^x\).
Simpson’s Rule. Apply Simpson’s rule to make an \(xy \)-table for \(y(x) \) with 6 rows and step size \(h = 0.2 \). Graph the approximate solution and the exact solution. Follow example 3.

31. \(y' = 2x, \ y(0) = 2 \).

32. \(y' = 3x^2, \ y(0) = 2 \).

33. \(y' = 3x^2 + 2x, \ y(0) = 3 \).

34. \(y' = 3x^2 + 4x^3, \ y(0) = 3 \).

35. \(y' = \sin x, \ y(0) = 5 \).

36. \(y' = 2 \sin 2x, \ y(0) = 5 \).

37. \(y' = \ln(1 + x), \ y(0) = 1 \). Exact \((1 + x) \ln |1 + x| + 1 - x \).

38. \(y' = 2 \ln(1 + 2x), \ y(0) = 1 \). Exact \((1 + 2x) \ln |1 + 2x| + 1 - 2x \).

39. \(y' = xe^x, \ y(0) = 1 \). Exact \(xe^x - e^x + 2 \).

40. \(y' = 2x^2e^{2x}, \ y(0) = 4 \). Exact \(2x^2e^x - 4xe^x + 4e^x \).

Simpson’s Rule. The following exercises use formulas and techniques found in the proof on page 217 and in Example 4, page 216.

41. Verify with Simpson’s rule (5) for cubic polynomials the equality \(\int_1^2 (x^3 + 16x^2 + 4) dx = 541/12 \).

42. Verify with Simpson’s rule (5) for cubic polynomials the equality \(\int_1^2 (x^3 + x + 14) dx = 77/4 \).

43. Let \(f(x) \) satisfy \(f(0) = 1, \ f(1/2) = 6/5, \ f(1) = 3/4 \). Apply Simpson’s rule with one division to verify that \(\int_0^1 f(x) dx \approx 131/120 \).

44. Let \(f(x) \) satisfy \(f(0) = -1, \ f(1/2) = 1, \ f(1) = 2 \). Apply Simpson’s rule with one division to verify that \(\int_0^1 f(x) dx \approx 5/6 \).

45. Verify Simpson’s equality (5), assuming \(Q(x) = 1 \) and \(Q(x) = x \).

46. Verify Simpson’s equality (5), assuming \(Q(x) = x^2 \).

Quadratic Interpolation. The following exercises use formulas and techniques from the proof on page 217.

47. Verify directly that the quadratic polynomial \(y = x(7 - 4x) \) goes through the points \((0, 0), (1, 3), (2, -2) \).

48. Verify directly that the quadratic polynomial \(y = x(8 - 5x) \) goes through the points \((0, 0), (1, 3), (2, -4) \).

49. Compute the quadratic interpolation polynomial \(Q(x) \) which goes through the points \((0, 1), (0.5, 1.2), (1, 0.75) \).

50. Compute the quadratic interpolation polynomial \(Q(x) \) which goes through the points \((0, -1), (0.5, 1), (1, 2) \).

51. Verify the remaining cases in Lemma 1, page 218.

52. Verify the remaining cases in Lemma 2, page 218.
4.2 Solving $y' = f(x, y)$ Numerically

The numerical solution of the initial value problem

$y'(x) = f(x, y(x)), \quad y(x_0) = y_0$

is studied here by three basic methods. In each case, the current table entry x_0, y_0 plus step size h is used to find the next table entry X, Y. Define $X = x_0 + h$ and let Y be defined below, according to the algorithm selected (Euler, Heun, RK4)

\[Y = y_0 + hf(x_0, y_0). \]

Euler’s method.

\[Y = y_0 + hf(x_0, y_0). \]

Heun’s method.

\[y_1 = y_0 + hf(x_0, y_0), \]

\[Y = y_0 + \frac{h}{2} (f(x_0, y_0) + f(x_0 + h, y_1)). \]

Runge-Kutta RK4 method.

\[
\begin{align*}
 k_1 &= hf(x_0, y_0), \\
 k_2 &= hf(x_0 + h/2, y_0 + k_1/2), \\
 k_3 &= hf(x_0 + h/2, y_0 + k_2/2), \\
 k_4 &= hf(x_0 + h, y_0 + k_3), \\
 Y &= y_0 + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}.
\end{align*}
\]

The last quantity Y contains an average of six terms, where two appear in duplicate: $(k_1 + k_2 + k_2 + k_3 + k_3 + k_4)/6$. A similar average appears in Simpson’s rule.

Relationship to calculus methods. If the differential equation (1) is specialized to the equation $y'(x) = F(x), \quad y(x_0) = y_0$, to agree with the previous section, then $f(x, y) = F(x)$ is independent of y and the three methods of Euler, Heun and RK4 reduce to the rectangular, trapezoidal and Simpson rules.

To justify the reduction in the case of Heun’s method, start with the assumption $f(x, y) = F(x)$ and observe that by independence of y, variable Y_1 is never used. Compute as follows:

\[
\begin{align*}
 Y &= y_0 + \frac{h}{2} (f(x_0, y_0) + f(x_0 + h, Y_1)) \quad \text{Apply equation (3).} \\
 &= y_0 + \frac{h}{2} (F(x_0) + F(x_0 + h)) \quad \text{Use } f(x, y) = F(x).
\end{align*}
\]

The right side of the last equation is exactly the trapezoidal rule.

\[2\] Euler is pronounced oiler. Heun rhymes with coin. Runge rhymes with run key.
Examples and Methods

5 Example (Euler’s Method) Solve \(y' = -y + 1 - x, \ y(0) = 3 \) by Euler’s method for \(x = 0 \) to \(x = 1 \) in steps of \(h = 0.1 \). Produce a table of values which compares approximate and exact solutions. Graph both the exact solution \(y = 2 - x + e^{-x} \) and the approximate solution.

Solution: Exact solution. The homogeneous solution is \(y_h = ce^{-x} \). A particular solution \(y_p = 2 - x + e^{-x} \) is found by the extended equilibrium method.

Initial condition \(y(0) = 3 \) gives \(c = 1 \) and then \(y = y_h + y_p = 2 - x + e^{-x} \).

Table of \(xy \)-values. The table starts because of \(y(0) = 3 \) with the two values \(X = 0, \ Y = 3 \). The \(X \)-values will be \(X = 0 \) to \(X = 1 \) in increments of \(h = 1/10 \), making 11 rows total. The \(Y \)-values are computed from

\[
Y = y_0 + hf(x_0, y_0) \\
= y_0 + h(-y_0 + 1 - x_0) \\
= 0.9y_0 + 0.1(1 - x_0)
\]

Euler’s method. Use \(f(x, y) = -y + 1 - x \). Use \(h = 0.1 \).

The pair \(x_0, y_0 \) represents the two entries in the current row of the table. The next table pair \(X, Y \) is given by \(X = x_0 + h, \ Y = 0.9y_0 + 0.1(1 - x_0) \). It is normal in a computation to do the second pair by hand, then use computing machinery to reproduce the hand result and finish the computation of the remaining table rows. Here’s the second pair:

\[
X = x_0 + h \\
= 0.1, \\
Y = 0.9y_0 + 0.1(1 - x_0), \\
= 0.9(3) + 0.1(1 - 0), \\
= 2.8.
\]

Definition of \(X \)-values. Substitute \(x_0 = 0 \) and \(h = 0.1 \). The simplified recurrence. Substitute for row 1, \(x_0 = 0, \ y_0 = 3 \). Second row found: \(X = 0.1, \ Y = 2.8 \).

By the same process, the third row is \(X = 0.2, \ Y = 2.61 \). This gives the \(xy \)-table below, in which the exact values from \(y = 2 - x + e^{-x} \) are also tabulated.

Table 5. Euler’s method applied with \(h = 0.1 \) on \(0 \leq x \leq 1 \) to the problem \(y' = -y + 1 - x, \ y(0) = 3 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\text{Exact})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.00000</td>
<td>3.0000000</td>
</tr>
<tr>
<td>0.1</td>
<td>2.80000</td>
<td>2.8048374</td>
</tr>
<tr>
<td>0.2</td>
<td>2.61000</td>
<td>2.6187308</td>
</tr>
<tr>
<td>0.3</td>
<td>2.42900</td>
<td>2.4408182</td>
</tr>
<tr>
<td>0.4</td>
<td>2.25610</td>
<td>2.2703200</td>
</tr>
<tr>
<td>0.5</td>
<td>2.09049</td>
<td>2.1065307</td>
</tr>
</tbody>
</table>

See page 224 for maple code which automates Euler’s method. The approximate solution graphed in Figure 6 is nearly identical to the exact solution \(y = 2 - x + e^{-x} \). The maple plot code for Figure 6:

\[
L:=\{0.0,3.00000\},\{0.1,2.80000\},\{0.2,2.61000\},\{0.3,2.42900\}, \\
\{0.4,2.25610\},\{0.5,2.09049\},\{0.6,1.93444\},\{0.7,1.77830\}, \\
\{0.8,1.63047\},\{0.9,1.48742\},\{1.0,1.34868\}:
\]

\[
\text{plot}([\{L\},2-x+exp(-x)],x=0..1);
\]
4.2 Solving $y' = f(x, y)$ Numerically

6 Example (Euler and Heun Methods) Solve $y' = -y + 1 - x$, $y(0) = 3$ by both Euler's method and Heun's method for $x = 0$ to $x = 1$ in steps of $h = 0.1$. Produce a table of values which compares approximate and exact solutions.

Solution Table of xy-values. The Euler method was applied in Example 5. Heun's method will be documented here. The first pair is 0, 3. The second pair X, Y will be computed by hand below.

$$X = x_0 + h$$
$$= 0.1,$$

$$Y_1 = y_0 + hf(x_0, y_0)$$
$$= y_0 + 0.1(-y_0 + 1 - x_0)$$
$$= 2.8,$$

$$Y = y_0 + h(f(x_0, y_0) + f(x_0 + h, Y_1))/2,$$
$$= 3 + 0.05(-3 + 1 - 0 - 2.8 + 1 - 0.1)$$
$$= 2.805.$$

Therefore, the second row is $X = 0.1$, $Y = 2.805$. By the same process, the third row is $X = 0.2$, $Y = 2.619025$. This gives the xy-table below, in which the exact values from $y = 2 - x + e^{-x}$ are also tabulated.

Table 6. Euler and Heun methods applied with $h = 0.1$ on $0 \leq x \leq 1$ to the problem $y' = -y + 1 - x$, $y(0) = 3$.

<table>
<thead>
<tr>
<th>x</th>
<th>y-Euler</th>
<th>y-Heun</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.00000</td>
<td>3.00000</td>
<td>3.0000000</td>
</tr>
<tr>
<td>0.1</td>
<td>2.80000</td>
<td>2.80500</td>
<td>2.8048374</td>
</tr>
<tr>
<td>0.2</td>
<td>2.61000</td>
<td>2.61903</td>
<td>2.6187308</td>
</tr>
<tr>
<td>0.3</td>
<td>2.42900</td>
<td>2.44122</td>
<td>2.4408182</td>
</tr>
<tr>
<td>0.4</td>
<td>2.25610</td>
<td>2.27080</td>
<td>2.2703200</td>
</tr>
<tr>
<td>0.5</td>
<td>2.09049</td>
<td>2.10708</td>
<td>2.1065307</td>
</tr>
<tr>
<td>0.6</td>
<td>1.93144</td>
<td>1.94940</td>
<td>1.9488116</td>
</tr>
<tr>
<td>0.7</td>
<td>1.77830</td>
<td>1.79721</td>
<td>1.7965853</td>
</tr>
<tr>
<td>0.8</td>
<td>1.63047</td>
<td>1.64998</td>
<td>1.6493290</td>
</tr>
<tr>
<td>0.9</td>
<td>1.48742</td>
<td>1.50723</td>
<td>1.5065697</td>
</tr>
<tr>
<td>1.0</td>
<td>1.34868</td>
<td>1.36854</td>
<td>1.3678794</td>
</tr>
</tbody>
</table>
Computer algebra system. The implementation for maple appears below. Part of the interface is repetitive execution of a group, which is used here to avoid loop constructs. The code produces a list \(L \) which contains Euler (left panel) or Heun (right panel) approximations.

```maple
# Euler algorithm
# Group 1, initialize.
f:=(x,y)->-y+1-x:
x0:=0:y0:=3:h:=.1:L:=[x0,y0]:
# Group 2, repeat 10 times
Y:=y0+h*f(x0,y0):
x0:=x0+h:y0:=Y:L:=L,[x0,y0];
# Group 3, plot.
plot([L]);
```

```maple
# Heun algorithm
# Group 1, initialize.
f:=(x,y)->-y+1-x:
x0:=0:y0:=3:h:=.1:L:=[x0,y0]:
# Group 2, repeat 10 times
Y:=y0+h*f(x0,y0):
Y:=y0+h*(f(x0,y0)+f(x0+h,Y))/2:
x0:=x0+h:y0:=Y:L:=L,[x0,y0];
# Group 3, plot.
plot([L]);
```

Numerical laboratory. The implementation of the Heun method for matlab, octave and scilab will be described. The code is written into files \(f.m \) and \(\text{heun}.m \), which must reside in a default directory. Then \([X,Y]=\text{heun}(0,3,1,10)\) produces the \(xy \)-table. The graphic is made with \(\text{plot}(X,Y) \).

File \(f.m \):
```matlab
function yp = f(x,y)
yp= -y+1-x;
```

File \(\text{heun}.m \):
```matlab
function [X,Y] = heun(x0,y0,x1,n)
h=(x1-x0)/n;X=x0;Y=y0;
for i=1:n;
y1= y0+h*f(x0,y0);
y0= y0+h*(f(x0,y0)+f(x0+h,y1))/2;
x0=x0+h;
X=[X;x0];Y=[Y;y0];
end
```

7 Example (Euler, Heun and RK4 Methods) Solve the initial value problem \(y' = -y + 1 - x \), \(y(0) = 3 \) by Euler’s method, Heun’s method and the RK4 method for \(x = 0 \) to \(x = 1 \) in steps of \(h = 0.1 \). Produce a table of values which compares approximate and exact solutions.

Solution: Table of \(xy \)-values. The Euler and Heun methods were applied in Example 6. The Runge-Kutta method (RK4) will be illustrated here. The first pair is 0, 3. The second pair \(X, Y \) will be computed by hand calculator.

\[
X = x_0 + h = 0.1,
\]

\[
k_1 = hf(x_0, y_0) = 0.1(-y_0 + 1 - x_0) = -0.2,
\]

\[
k_2 = hf(x_0 + h/2, y_0 + k_1/2) = 0.1f(0.05, 2.9) = -0.195,
\]

\[
k_3 = hf(x_0 + h/2, y_0 + k_2/2)
\]

Definition of \(X \)-values. Substitute \(x_0 = 0 \) and \(h = 0.1 \). First RK4 formula. Use \(f(x, y) = -y + 1 - x \). Row 1 supplies \(x_0 = 0, y_0 = 3 \). Second RK4 formula. Third RK4 formula.
4.2 Solving $y' = f(x, y)$ Numerically

$$= 0.1 f(0.05, 2.9025)$$
$$= -0.19525,$$

$$k_4 = h f(x_0 + h, y_0 + k_3)$$
$$= 0.1 f(0.1, 2.80475)$$
$$= -0.190475,$$

$$Y = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$
$$= 3 + \frac{1}{6} (-1.170975)$$
$$= 2.8048375.$$

Therefore, the second row is $X = 0.1, Y = 2.8048375$. Continuing, the third row is $X = 0.2, Y = 2.6187309$. The Euler and Heun steps were done in the previous example and recorded in Table 6. We have computed the first three rows of the xy-table below, in which exact values $y = 2 - x + e^{-x}$ are also tabulated.

Table 7. Euler, Heun and RK4 methods applied with $h = 0.1$ on $0 \leq x \leq 1$ to the problem $y' = -y + 1 - x$, $y(0) = 3$.

<table>
<thead>
<tr>
<th>x</th>
<th>y-Euler</th>
<th>y-Heun</th>
<th>y-RK4</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.00000</td>
<td>3.00000</td>
<td>3.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>2.80000</td>
<td>2.80500</td>
<td>2.8048375</td>
<td>2.8048374</td>
</tr>
<tr>
<td>0.2</td>
<td>2.61000</td>
<td>2.61903</td>
<td>2.6187309</td>
<td>2.6187308</td>
</tr>
<tr>
<td>0.3</td>
<td>2.42900</td>
<td>2.44122</td>
<td>2.4408184</td>
<td>2.4408182</td>
</tr>
<tr>
<td>0.4</td>
<td>2.25610</td>
<td>2.27080</td>
<td>2.2703203</td>
<td>2.2703200</td>
</tr>
<tr>
<td>0.5</td>
<td>2.09049</td>
<td>2.10708</td>
<td>2.1065309</td>
<td>2.1065307</td>
</tr>
<tr>
<td>0.6</td>
<td>1.93144</td>
<td>1.94940</td>
<td>1.9488119</td>
<td>1.9488116</td>
</tr>
<tr>
<td>0.7</td>
<td>1.77830</td>
<td>1.79721</td>
<td>1.7965856</td>
<td>1.7965853</td>
</tr>
<tr>
<td>0.8</td>
<td>1.63047</td>
<td>1.64998</td>
<td>1.6493293</td>
<td>1.6493290</td>
</tr>
<tr>
<td>0.9</td>
<td>1.48742</td>
<td>1.50723</td>
<td>1.5065700</td>
<td>1.5065697</td>
</tr>
<tr>
<td>1.0</td>
<td>1.34868</td>
<td>1.36854</td>
<td>1.3678798</td>
<td>1.3678794</td>
</tr>
</tbody>
</table>

Computer algebra system. The implementation of RK4 for maple appears below, as a modification of the code for Example 6.

```maple
# Group 2, repeat 10 times.
k1:=h*f(x0,y0):
k2:=h*f(x0+h/2,y0+k1/2):
k3:=h*f(x0+h/2,y0+k2/2):
k4:=h*f(x0+h,y0+k3):
Y:=y0+(k1+2*k2+2*k3+k4)/6:
x0:=x0+h:y0:=Y:L:=L,[x0,y0];
```

Numerical laboratory. The implementation of RK4 for matlab, octave and scilab appears below, to be added to the code for Example 6. The code is written into file rk4.m, which must reside in a default directory. Then `[X,Y]=rk4(0,3,1,10)` produces the xy-table.

```matlab
function [X,Y] = rk4(x0,y0,x1,n)
h=(x1-x0)/n;X=x0;Y=y0;
for i=1:n;
```

Computer algebra system. The implementation of RK4 for maple appears below, as a modification of the code for Example 6.

```maple
# Group 2, repeat 10 times.
k1:=h*f(x0,y0):
k2:=h*f(x0+h/2,y0+k1/2):
k3:=h*f(x0+h/2,y0+k2/2):
k4:=h*f(x0+h,y0+k3):
Y:=y0+(k1+2*k2+2*k3+k4)/6:
x0:=x0+h;y0:=Y:L:=L,[x0,y0];
```

Numerical laboratory. The implementation of RK4 for matlab, octave and scilab appears below, to be added to the code for Example 6. The code is written into file rk4.m, which must reside in a default directory. Then `[X,Y]=rk4(0,3,1,10)` produces the xy-table.

```matlab
function [X,Y] = rk4(x0,y0,x1,n)
h=(x1-x0)/n;X=x0;Y=y0;
for i=1:n;
```
\[k_1 = h \cdot f(x_0, y_0); \]
\[k_2 = h \cdot f(x_0 + h/2, y_0 + k_1/2); \]
\[k_3 = h \cdot f(x_0 + h/2, y_0 + k_2/2); \]
\[k_4 = h \cdot f(x_0 + h, y_0 + k_3); \]
\[y_0 = y_0 + (k_1 + 2k_2 + 2k_3 + k_4)/6; \]
\[x_0 = x_0 + h; \]
\[X = [X; x_0]; Y = [Y; y_0]; \]
\[\text{end} \]

Motivation for the three methods. The entry point to the study is the equivalent integral equation

\[y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt. \]

The ideas can be explained by replacement of the integral in (5) by the rectangular, trapezoidal or Simpson rule. Unknown values of \(y \) that appear are subsequently replaced by suitable approximations. These approximations, known as **predictors** and **correctors**, are defined as follows from the integral formula

\[y(b) = y(a) + \int_{a}^{b} f(x, y(x)) dx, \]

by assuming the integrand is a constant \(C \) (the idea is due to Euler).

Predictor \(Y = y(a) + (b - a)f(a, Y^*) \). Given an estimate or an exact value \(Y^* \) for \(y(a) \), then variable \(Y \) predicts \(y(b) \). The approximation assumes the integrand in (5) constantly \(C = f(a, Y^*) \).

Corrector \(Y = y(a) + (b - a)f(b, Y^{**}) \). Given an estimate or an exact value \(Y^{**} \) for \(y(b) \), then variable \(Y \) corrects \(y(b) \). The approximation assumes the integrand in (5) constantly \(C = f(b, Y^{**}) \).

Euler’s method. Replace in (5) \(x = x_0 + h \) and apply the rectangular rule to the integral. The resulting approximation is known as **Euler’s method**:

\[y(x_0 + h) \approx Y = y_0 + hf(x_0, y_0). \]

Heun’s method. Replace in (5) \(x = x_0 + h \) and apply the trapezoidal rule to the integral, to get

\[y(x_0 + h) \approx y_0 + \frac{h}{2} (f(x_0, y(x_0)) + f(x_0 + h, y(x_0 + h))). \]

The troublesome expressions are \(y(x_0) \) and \(y(x_0 + h) \). The first is \(y_0 \). The second can be estimated by the **predictor** \(y_0 + hf(x_0, y_0) \). The resulting approximation is known as **Heun’s method** or the **modified Euler method**:

\[Y_1 = y_0 + hf(x_0, y_0), \]
\[y(x_0 + h) \approx Y = y_0 + \frac{h}{2} (f(x_0, y_0) + f(x_0 + h, Y_1)). \]
4.2 Solving $y' = f(x, y)$ Numerically

RK4 method. Replace in (5) $x = x_0 + h$ and apply Simpson’s rule to the integral. This gives $y(x_0 + h) \approx y_0 + S$ where the Simpson estimate S is given by

$$S = \frac{h}{6} (f(x_0, y(x_0)) + 4f(M, y(M)) + f(x_0 + h, y(x_0 + h)))$$

and $M = x_0 + h/2$ is the midpoint of $[x_0, x_0 + h]$. The troublesome expressions in S are $y(x_0)$, $y(M)$ and $y(x_0 + h)$. The work of Runge and Kutta shows that

- Expression $y(x_0)$ is replaced by y_0.
- Expression $y(M)$ can be replaced by either Y_1 or Y_2, where $Y_1 = y_0 + 0.5hf(x_0, y_0)$ is a predictor and $Y_2 = y_0 + 0.5hf(M, Y_1)$ is a corrector.
- Expression $y(x_0 + h)$ can be replaced by $Y_3 = y_0 + hf(M, Y_2)$. This replacement arises from the predictor $y(x_0 + h) \approx y(M) + 0.5hf(M, y(M))$ by using corrector $y(M) \approx y_0 + 0.5hf(M, y(M))$ and then replacing $y(M)$ by Y_2.

The formulas of Runge-Kutta result by using the above replacements for $y(x_0)$, $y(M)$ and $y(x_0 + h)$, with the caveat that $f(M, y(M))$ gets replaced by the average of $f(M, Y_1)$ and $f(M, Y_2)$. In detail,

$$6S = hf(x_0, y(x_0)) + 4hf(M, y(M)) + hf(x_0 + h, y(x_0 + h))$$

$$\approx hf(x_0, y_0) + 4h\frac{f(M, Y_1) + f(M, Y_2)}{2} + hf(x_0 + h, Y_3)$$

$$= k_1 + 2k_2 + 2k_3 + k_4$$

where the RK4 quantities k_1, k_2, k_3, k_4 are defined by (4), page 221. The resulting approximation is known as the **RK4 method**.

Exercises 4.2

Euler’s Method. Apply Euler’s method to make an xy-table for $y(x)$ with 11 rows and step size $h = 0.1$. Graph the approximate solution and the exact solution. Follow Example 5.

1. $y' = 2 + y$, $y(0) = 5$. Exact $y(x) = -2 + 7e^x$.
2. $y' = 3 + y$, $y(0) = 5$. Exact $y(x) = -3 + 8e^x$.
3. $y' = e^{-x} + y$, $y(0) = 4$. Exact $y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x$.
4. $y' = 3e^{-2x} + y$, $y(0) = 4$. Exact $y(x) = -e^{-2x} + 5e^x$.
5. $y' = y\sin x$, $y(0) = 1$. Exact $y(x) = e^{\cos x}$.
6. $y' = 2y\sin 2x$, $y(0) = 1$. Exact $y(x) = e^{\cos 2x}$.
7. $y' = y/(1 + x)$, $y(0) = 1$. Exact $y(x) = 1 + x$.
8. $y' = y(x)/(1 + 2x)$, $y(0) = 1$. Exact $y(x) = \sqrt{1 + 2x}$.
9. \(y' = yxe^x, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = 1 + (x-1)e^x \).

10. \(y' = 2y(x^2 + x)e^{2x}, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = x^2e^{2x} \).

Heun’s Method. Apply Heun’s method to make an \(xy \)-table for \(y(x) \) with 6 rows and step size \(h = 0.2 \).
Graph the approximate solution and the exact solution. Follow Example 6.

11. \(y' = 2 + y, \ y(0) = 5 \). Exact
\(y(x) = -2 + 7e^x \).

12. \(y' = 3 + y, \ y(0) = 5 \). Exact
\(y(x) = -3 + 8e^x \).

13. \(y' = e^{-x} + y, \ y(0) = 4 \). Exact
\(y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x \).

14. \(y' = 3e^{-2x} + y, \ y(0) = 4 \). Exact
\(y(x) = e^{-2x} + 5e^x \).

15. \(y' = y \sin x, \ y(0) = 1 \). Exact
\(y(x) = e^{\cos x} \).

16. \(y' = 2y \sin 2x, \ y(0) = 1 \). Exact
\(y(x) = e^{\cos 2x} \).

17. \(y' = y/(1 + x), \ y(0) = 1 \). Exact
\(y(x) = 1 + x \).

18. \(y' = y(x)/(1 + 2x), \ y(0) = 1 \). Exact
\(y(x) = \sqrt{1 + 2x} \).

19. \(y' = yxe^x, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = 1 + (x-1)e^x \).

20. \(y' = 2y(x^2 + x)e^{2x}, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = x^2e^{2x} \).

RK4 Method. Apply the Runge-Kutta method (RK4) to make an \(xy \)-table for \(y(x) \) with 6 rows and step size \(h = 0.2 \). Graph the approximate solution and the exact solution. Follow Example 7.

21. \(y' = 2 + y, \ y(0) = 5 \). Exact
\(y(x) = -2 + 7e^x \).

22. \(y' = 3 + y, \ y(0) = 5 \). Exact
\(y(x) = -3 + 8e^x \).

23. \(y' = e^{-x} + y, \ y(0) = 4 \). Exact
\(y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x \).

24. \(y' = 3e^{-2x} + y, \ y(0) = 4 \). Exact
\(y(x) = e^{-2x} + 5e^x \).

25. \(y' = y \sin x, \ y(0) = 1 \). Exact
\(y(x) = e^{\cos x} \).

26. \(y' = 2y \sin 2x, \ y(0) = 1 \). Exact
\(y(x) = e^{\cos 2x} \).

27. \(y' = y/(1 + x), \ y(0) = 1 \). Exact
\(y(x) = 1 + x \).

28. \(y' = y(x)/(1 + 2x), \ y(0) = 1 \). Exact
\(y(x) = \sqrt{1 + 2x} \).

29. \(y' = yxe^x, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = 1 + (x-1)e^x \).

30. \(y' = 2y(x^2 + x)e^{2x}, \ y(0) = 1 \). Exact
\(y(x) = e^{u(x)}, \ u(x) = x^2e^{2x} \).

Euler and RK4 Methods. Apply the Euler method and the Runge-Kutta method (RK4) to make a table with 6 rows and step size \(h = 0.1 \). The table columns are \(x, y_1, y_2, y \) where \(y_1 \) is the Euler approximation, \(y_2 \) is the RK4 approximation and \(y \) is the exact solution. Graph \(y_1, y_2, y \).

31. \(y' = \frac{1}{2}(y - 2)^2, \ y(0) = 3 \). Exact
\(y(x) = \frac{12x - 6}{x - 2} \).

32. \(y' = \frac{1}{2}(y - 3)^2, \ y(0) = 4 \). Exact
\(y(x) = \frac{3x - 8}{x - 2} \).

33. \(y' = x^3/y^2, \ y(2) = 3 \). Exact
\(y(x) = \frac{1}{2}\sqrt[x]{6x^4 + 120} \).

34. \(y' = x^5/y^2, \ y(2) = 3 \). Exact
\(y(x) = \frac{1}{2}\sqrt[x]{4x^6 - 40} \).

35. \(y' = 2x(1 + y^2), \ y(1) = 1 \). Exact
\(y(x) = \tan(x^2 + \pi/4) \).

36. \(y' = 3y^{2/3}, \ y(0) = 1 \). Exact
\(y(x) = (x + 1)^3 \).

37. \(y' = 1 + y^2, \ y(0) = 0 \). Exact
\(y(x) = \tan x \).

38. \(y' = 1 + y^2, \ y(0) = 1 \). Exact
\(y(x) = \tan(x + \pi/4) \).
4.3 Error in Numerical Methods

Numerical Errors

There are several kinds of errors made in numerical work. Studied here are cumulative error, local error, roundoff error and truncation error. The Landau order notation is introduced.

Cumulative Error. This error measurement is commonly used in displays like Table 8, in which approximate and exact solution columns already appear. In such applications, the cumulative error is the difference of the approximate and exact columns. The exact solution refers to \(y(x) \) defined by \(y' = f(x, y) \), \(y(x_0) = y_0 \) \((x_0 = 0, y_0 = 3 \) from line 1 of Table 8). The approximate solution refers to the \(y \)-values computed by the algorithm (column 2 in Table 8). A precise definition of the cumulative error \(E \) is given in terms of the exact solution \(y(x) \): given table entry \(X, Y \), then \(E = |y(X) - Y| \).

Table 8. Cumulative error.
A third column, cumulative error, is added to an existing \(xy \)-table of approximate and exact solutions. The cumulative error is computed by the formula \(E = |y_2 - y_1| \), where \(y_1 \) is the approximation and \(y_2 \) is the exact value.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)-Approx</th>
<th>(y)-Exact</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.00000</td>
<td>3.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.1</td>
<td>2.80000</td>
<td>2.8048374</td>
<td>0.0048374</td>
</tr>
<tr>
<td>0.2</td>
<td>2.61000</td>
<td>2.6187308</td>
<td>0.0087308</td>
</tr>
<tr>
<td>0.3</td>
<td>2.42900</td>
<td>2.4408182</td>
<td>0.0118182</td>
</tr>
</tbody>
</table>

Local Error. This error is made by one algorithm step in going from table entry \(x_1, y_1 \) to the next table entry \(x_2, y_2 \). It can be precisely defined in terms of the solution \(u(x) \) to \(u' = f(x, u) \), \(u(x_1) = y_1 \) by the formula

\[
E_{\text{loc}} = |u(x_2) - y_2|.
\]

Noteworthy is that \(u(x) \neq y(x) \). To explain, the exact solution \(y(x) \) solves \(y' = f(x, y) \), \(y(x_0) = y_0 \) where \(x_0, y_0 \) is the first table entry, while \(u(x) \) solves \(u' = f(x, u) \) for a different set of initial conditions. In particular, an \(xy \)-table of approximate and exact solution values, like Table 8, does not contain enough information to determine the local error!

To illustrate the ideas, consider \(y' = 2y, y(0) = 1 \) with exact solution
$y = e^{2x}$. Using Euler’s method with step size $h = 0.1$ gives the table

<table>
<thead>
<tr>
<th>x</th>
<th>y-approx</th>
<th>y-exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>1.2</td>
<td>1.2214028</td>
</tr>
<tr>
<td>0.2</td>
<td>1.44</td>
<td>1.4918247</td>
</tr>
</tbody>
</table>

To find the local error for line 2 to line 3 requires solving $u' = 2u$, $u(0.1) = 1.2$, and then evaluating $E = |u(0.2) - 1.4918247|$. We find that $u(x) = 1.2e^{2(x-0.1)}$ and then $E = |1.2e^{0.2} - 1.4918247| = 0.02614390$.

Roundoff Error. Also called rounding error, the roundoff error is the difference between the calculated approximation of a number to finitely many digits and its exact value in terms of infinitely many digits. The technical error is made by computers due to the representation of floating point numbers, which limits the number of significant digits in any computation. Integer arithmetic will normally generate no errors, unless integer overflow occurs, i.e., $x + y$ or xy can result in an integer larger than the machine can represent. Floating point arithmetic usually generates errors because of results that must be rounded to give a machine representation. To illustrate, 8-digit precision requires $a = 1.00000005$ be represented as $\hat{a} = 1.0000001$ and $b = 1.00000004$ be represented as $\hat{b} = 1$. Then $2a + 2b = 4.00000018$, which rounds to 4.0000002, while $2\hat{a} + 2\hat{b} = 4.0000001$. The roundoff error in this example is 0.0000001.

For numerical methods, this translates into fewer roundoff errors for $h = 0.1$ than for $h = 0.001$, because the number of arithmetic operations increases 1000-fold for $h = 0.001$. The payoff in increased accuracy expected for a change in step size from $h = 0.1$ to $h = 0.001$ may be less than theoretically possible, because the roundoff errors accumulate to cancel the effects of decreased step size. Positive and negative roundoff errors tend to cancel, leading to situations where a thousand-fold step size change causes only a thirty-fold change in roundoff error.

Truncation Error. It is typical in numerical mathematics to use formulas like $\pi = 3.14159$ or $e = 2.718$. These formulas truncate the actual decimal expansion, causing an error. Truncation is the term used for reducing the number of digits to the right of the decimal point, by discarding all digits past a certain point, e.g., 0.123456789 truncated to 5 digits is 0.12345. Common truncation errors are caused by dropping higher order terms in a Taylor series, or by approximating a nonlinear term by its linearization. In general, a truncation error is made whenever a formula is replaced by an approximate formula, in which case the formula is wrong even if computed exactly.
Landau Symbol. Edmund Landau, a German mathematician, introduced a convenient notation to represent truncation errors. If \(f \) and \(g \) are defined near \(h = 0 \), then \(f = O(g) \) means that \(|f(h)| \leq K|g(h)| \) as \(h \to 0 \), for some constant \(K \). The Landau notation \(f = O(g) \) is vocalized as “\(f \) equals big owe of \(g \).” The symbol \(O(h^n) \) therefore stands for terms or order \(h^n \). Taylor series expansions can then be referenced succinctly, e.g., \(\sin h = h + O(h^3) \), \(e^h = 1 + h + O(h^2) \), and so on. Some simple rules for the Landau symbol:

\[
O(h^n) + O(h^m) = O(h^{\min(n,m)}), \quad O(h^n)O(h^m) = O(h^{n+m}).
\]

Finite Blowup of Solutions. The solution \(y = (1 - x)^{-1} \) for \(y' = y^2 \), \(y(0) = 1 \) exists on \(0 \leq x < 1 \), but it becomes infinite at \(x = 1 \). The finite value \(x = 1 \) causes blowup of the \(y \)-value. This event is called finite blowup. Attempts to solve \(y' = y^2 \), \(y(0) = 1 \) numerically will fail near \(x = 1 \), and these errors will propagate past \(x = 1 \), if the numerical problem is allowed to be solved over an interval larger than \(0 \leq x < 1 \).

Unfortunately, finite blowup cannot be detected in advance from smoothness of \(f(x, y) \) or the fact that the problem is applied. For example, logistic population models \(y' = y(a - by) \) typically have solutions with finite blowup. On the positive side, there are three common conditions which guarantee no finite blowup:

- A linear equation \(y' + p(x)y = q(x) \) does not exhibit finite blowup on the domain of continuity of \(p(x) \) and \(q(x) \).
- An equation \(y' = f(x, y) \) does not exhibit finite blowup if \(f \) is continuous and \(\max |f_y(x, y)| < \infty \).
- An equation \(y' = f(x, y) \) does not exhibit finite blowup if \(f \) is continuous and \(f \) satisfies a Lipschitz condition \(|f(x, y_1) - f(x, y_2)| \leq M|y_1 - y_2| \) for some constant \(M > 0 \) and all \(x, y_1, y_2 \).

Numerical Instability. The equation \(y' = y + 1 - x \) has solution \(y = x + ce^x \). Attempts to solve for \(y(0) = 1 \) will meet with failure, because errors will cause the numerical solution to lock onto some solution with \(c \neq 0 \) and small, which causes the numerical solution to grow like \(e^x \). In this case, the instability was caused by the problem itself.

Numerical instability can result even though the solution is physically stable. An example is \(y' = -50(y - \sin x) + \cos x \), \(y(0) = 0 \). The general solution is \(y = ce^{-50x} + \sin x \) and \(y(0) = 0 \) gives \(c = 0 \). The negative exponential term is transient and \(\sin x \) is the unique periodic steady-state solution. The solution is insensitive to minor changes in the initial condition. For popular numerical methods, the value at \(x = 1 \) seems to depend greatly on the step size, as is shown by Table 9.
Table 9. Cumulative error at $x = 1$ for Euler, Heun and RK4 methods applied to $y' = -50(y - \sin x) + \cos x$, $y(0) = 0$, for various step sizes.

<table>
<thead>
<tr>
<th></th>
<th>$h = 0.1$</th>
<th>$h = 0.05$</th>
<th>$h = 0.02$</th>
<th>$h = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler</td>
<td>40701.23</td>
<td>0.183e7</td>
<td>0.00008</td>
<td>0.00004</td>
</tr>
<tr>
<td>Heun</td>
<td>0.328e12</td>
<td>0.430e14</td>
<td>0.005</td>
<td>0.00004</td>
</tr>
<tr>
<td>RK4</td>
<td>0.318e20</td>
<td>0.219e18</td>
<td>0.00004</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

The sensitivity to step size is due to the algorithm and not to instability of the problem.

Stiff Problems. The differential equation $y' = -50(y - \sin x) + \cos x$, which has solution $y = ce^{-50x} + \sin x$, is called **stiff**, a technical term defined precisely in advanced numerical analysis references, e.g., [?]. Characteristically, it means that the equation has a transient solution $y(x)$ with derivative $y'(x)$ tending slowly to zero. For instance, if $y(x)$ has a term like ce^{-50x}, then the derivative is $y'(x)$ is approximately 50 times larger ($y'/y \approx -50$). Applications with transient solutions of Landau order e^{-at} are stiff when a is large. Stiff problems occupy an active branch of research in applied numerical analysis. Researchers call a problem stiff provided certain numerical methods for it are unstable (e.g., inaccurate) unless the step size is taken to be extremely small.

Cumulative Error Estimates

It is possible to give theoretical but not practical estimates for the cumulative error in the case of Euler’s method, Heun’s method and the RK4 method. Applied literature and computer documentation often contain references to these facts, typically in the following succinct form.

- Euler’s method has order 1.
- Heun’s method has order 2.
- The Runge-Kutta method (RK4) has order 4.

The exact meaning of these statements is given below in the theorems. The phrase order n in this context refers to Edmund Landau’s order notation $O(h^n)$. In particular, order 2 means $O(h^2)$.

In practical terms, the statements measure the quality and accuracy of the algorithms themselves, and hence establish an expectation of performance from each algorithm. They do not mean that step size $h = 0.001$ gives three digits of accuracy in the computed answer! The meaning is that repeated halving of the step size will result in three digits of accuracy, eventually. Most persons half the step size until the first three
digits repeat, then they take this to be the optimal step size for three-digit accuracy. The theorems don’t say that this practise is correct, only that for some step size it is correct.

Theorem 1 (Euler’s Method Error)

Let the initial value problem \(y' = f(x, y), \ y(x_0) = y_0 \) have a solution \(y(x) \) in the region \(x_0 \leq x \leq x_0 + H, \ |y - y_0| \leq K \) and assume that \(f, f_x \) and \(f_y \) are continuous. Then the cumulative error \(E(x_0 + nh) \) at step \(n, nh \leq H \), made by Euler’s method using step size \(h \) satisfies \(E(x_0 + nh) \leq Ch \). The constant \(C \) depends only on \(x_0, y_0, H, K, f, f_x \) and \(f_y \). See [?] and [?].

Theorem 2 (Heun Method Error)

Let the initial value problem \(y' = f(x, y), \ y(x_0) = y_0 \) have a solution in the region \(x_0 \leq x \leq x_0 + H, \ |y - y_0| \leq K \). Assume \(f \) is continuous with continuous partials to order 3. Then the cumulative error \(E(x_0 + nh) \) at step \(n, nh \leq H \), made by Heun’s method using step size \(h \), satisfies \(E(x_0 + nh) \leq Ch^2 \). The constant \(C \) depends only on \(x_0, y_0, H, K, f \) and the partials of \(f \) to order 3.

Theorem 3 (RK4 Method Error)

Let the initial value problem \(y' = f(x, y), \ y(x_0) = y_0 \) have a solution \(y(x) \) in the region \(x_0 \leq x \leq x_0 + H, \ |y - y_0| \leq K \). Assume \(f \) is continuous with continuous partials to order 5. Then the cumulative error \(E(x_0 + nh) \) at step \(n, nh \leq H \), made by the RK4 method using step size \(h \), satisfies \(E(x_0 + nh) \leq Ch^4 \). The constant \(C \) depends only on \(x_0, y_0, H, K, f \) and the partials of \(f \) to order 5.

The last two results are implied by local truncation error estimates for Taylor’s method of order \(n \) (section 5.3 in Burden-Faires [?]).

Exercises 4.3

Cumulative Error. Make a table of 6 lines which has four columns \(x, y_1, y, E \). Symbols \(y_1 \) and \(y \) are the approximate and exact solutions while \(E \) is the cumulative error. Find \(y_1 \) using Euler’s method in steps \(h = 0.1 \).

1. \(y' = 2 + y, \ y(0) = 5 \). Exact solution \(y(x) = -2 + 7e^x \).
2. \(y' = 3 + y, \ y(0) = 5 \). Exact solution \(y(x) = -3 + 8e^x \).
3. \(y' = e^{-x} + y, \ y(0) = 4 \). Exact solution \(y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x \).
4. \(y' = 3e^{-2x} + y, \ y(0) = 4 \). Exact solution \(y(x) = -e^{-2x} + 5e^x \).
5. \(y' = 2 + y, \ y(0) = 5 \). General solution \(y(x) = -2 + (2 + c)e^x \).
6. \(y' = 3 + y, \ y(0) = 5 \). General solution \(y(x) = -3 + (3 + c)e^x \).
7. \(y' = 2e^{-x} + y, \ y(0) = 4 \). General solution \(y(x) = -e^{-x} + (1 + c)e^x \).

Local Error. Make a table of 4 lines which has four columns \(x, y_1, y, E \). Symbols \(y_1 \) and \(y \) are the approximate and exact solutions while \(E \) is the local error. Find \(y_1 \) using Euler’s method in steps \(h = 0.1 \). The general solution in each exercise is the solution for \(y(0) = c \).

5. \(y' = 2 + y, \ y(0) = 5 \). General solution \(y(x) = -2 + (2 + c)e^x \).
6. \(y' = 3 + y, \ y(0) = 5 \). General solution \(y(x) = -3 + (3 + c)e^x \).
7. \(y' = 2e^{-x} + y, \ y(0) = 4 \). General solution \(y(x) = -e^{-x} + (1 + c)e^x \).
8. $y' = 3e^{-2x} + y$, $y(0) = 4$. General solution $y(x) = e^{-2x} + (1+c)e^x$.

Roundoff Error. Compute the roundoff error for $y = 5a + 4b$.

9. Assume 3-digit precision. Let $a = 0.0001$ and $b = 0.0003$.

10. Assume 3-digit precision. Let $a = 0.0002$ and $b = 0.0001$.

11. Assume 5-digit precision. Let $a = 0.000007$ and $b = 0.000003$.

12. Assume 5-digit precision. Let $a = 0.000005$ and $b = 0.000001$.

Truncation Error. Find the truncation error.

13. Truncate $x = 1.123456789$ to 3 digits right of the decimal point.

14. Truncate $x = 1.123456789$ to 4 digits right of the decimal point.

15. Truncate $x = 1.017171717$ to 7 digits right of the decimal point.

16. Truncate $x = 1.03939393939$ to 9 digits right of the decimal point.

Guessing the Step Size. Do a numerical experiment to estimate the step size needed for 7-digit accuracy of the solution. Using the given method, report the step size, which if halved repeatedly, generates a numerical solution with 7-digit accuracy.

17. $y' = 2 + y$, $y(0) = 5$. Exact solution $y(x) = -2 + 7e^x$. Euler’s method.

18. $y' = 3 + y$, $y(0) = 5$. Exact solution $y(x) = -3 + 8e^x$. Euler’s method.

19. $y' = e^{-x} + y$, $y(0) = 4$. Exact solution $y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x$. Euler’s method.

20. $y' = 3e^{-2x} + y$, $y(0) = 4$. Exact solution $y(x) = -e^{-2x} + 5e^x$. Euler’s method.

21. $y' = y/(1 + x)$, $y(0) = 1$. Exact solution $y(x) = 1 + x$. Euler’s method.

22. $y' = y(x)/(1 + 2x)$, $y(0) = 1$. Exact solution $y(x) = \sqrt{1 + 2x}$. Euler’s method.

23. $y' = 2 + y$, $y(0) = 5$. Exact solution $y(x) = -2 + 7e^x$. Heun’s method.

24. $y' = 3 + y$, $y(0) = 5$. Exact solution $y(x) = -3 + 8e^x$. Heun’s method.

25. $y' = e^{-x} + y$, $y(0) = 4$. Exact solution $y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x$. Heun’s method.

26. $y' = 3e^{-2x} + y$, $y(0) = 4$. Exact solution $y(x) = -e^{-2x} + 5e^x$. Heun’s method.

27. $y' = y/(1 + x)$, $y(0) = 1$. Exact solution $y(x) = 1 + x$. Heun’s method.

28. $y' = y(x)/(1 + 2x)$, $y(0) = 1$. Exact solution $y(x) = \sqrt{1 + 2x}$. Heun’s method.

29. $y' = 2 + y$, $y(0) = 5$. Exact solution $y(x) = -2 + 7e^x$. RK4 method.

30. $y' = 3 + y$, $y(0) = 5$. Exact solution $y(x) = -3 + 8e^x$. RK4 method.

31. $y' = e^{-x} + y$, $y(0) = 4$. Exact solution $y(x) = -\frac{1}{2}e^{-x} + \frac{9}{2}e^x$. RK4 method.

32. $y' = 3e^{-2x} + y$, $y(0) = 4$. Exact solution $y(x) = -e^{-2x} + 5e^x$. RK4 method.

33. $y' = y/(1 + x)$, $y(0) = 1$. Exact solution $y(x) = 1 + x$. RK4 method.

34. $y' = y(x)/(1 + 2x)$, $y(0) = 1$. Exact solution $y(x) = \sqrt{1 + 2x}$. RK4 method.
4.4 Computing \(\pi \), \(\ln 2 \) and \(e \)

The approximations \(\pi \approx 3.1415927 \), \(\ln 2 \approx 0.69314718 \), \(e \approx 2.7182818 \) can be obtained by numerical methods applied to the following initial value problems:

\[
\begin{align*}
(1) & \quad y' = \frac{4}{1 + x^2}, \quad y(0) = 0, \quad \pi = y(1), \\
(2) & \quad y' = \frac{1}{1 + x}, \quad y(0) = 0, \quad \ln 2 = y(1), \\
(3) & \quad y' = y, \quad y(0) = 1, \quad e = y(1).
\end{align*}
\]

Equations (1)–(3) define the constants \(\pi \), \(\ln 2 \) and \(e \) through the corresponding initial value problems.

The third problem (3) requires a numerical method like RK4, while the other two can be solved using Simpson’s quadrature rule. It is a fact that RK4 reduces to Simpson’s rule for \(y' = F(x) \), therefore, for simplicity, RK4 can be used for all three problems. It will be seen that the choice of the DE-solver algorithm (e.g., RK4) affects computational accuracy.

Computing \(\pi = \int_0^1 4\left(1 + x^2\right)^{-1}dx \)

The easiest method is Simpson’s rule. It can be implemented in virtually every computing environment. The code below works in popular \texttt{matlab}-compatible numerical laboratories. It modifies easily to other computing platforms, such as \texttt{maple} and \texttt{mathematica}. To obtain the answer for \(\pi = 3.1415926535897932385 \) correct to 12 digits, execute the code on the right in Table 10, below the definition of \(f \).

Table 10. Numerical integration of \(\int_0^1 4\left(1 + x^2\right)^{-1}dx \).

Simpson’s rule is applied, using \texttt{matlab}-compatible code. About 50 subdivisions are required.

```matlab
function ans = simp(x0,x1,n,f)
    h=(x1-x0)/n; ans=0;
    for i=1:n;
        ans1=f(x0)+4*f(x0+h/2)+f(x0+h);
        ans=ans+(h/6)*ans1;
        x0=x0+h;
    end
    ans=simp(0,1,50,f)

function y = f(x)
    y = 4/(1+x*x);
ans=simp(0,1,50,f)
```

It is convenient in some laboratories to display answers with \texttt{printf} or \texttt{fprintf}, in order to show 12 digits. For example, \texttt{scilab} prints 3.1415927 by default, but 3.141592653589800 using \texttt{printf}.

The results checked in \texttt{maple} give \(\pi \approx 3.1415926535897932385 \), accurate to 20 digits, regardless of the actual \texttt{maple} numerical integration.
algorithm chosen (three were possible). The checks are invoked by
\texttt{evalf(X,20)} where \(X\) is replaced by \(\texttt{int}(4/(1+x\times x),x=0..1)\).

The results for an approximation to \(\pi\) using numerical solvers for
differential equations varied considerably from one algorithm to another,
although all were accurate to 5 rounded digits. A summary for \texttt{odepack}
routines appears in Table 11, obtained from the \texttt{scilab}
interface. A
selection of routines supported by \texttt{maple} appear in Table 12. Default
settings were used with no special attempt to increase accuracy.

The \texttt{Gear} routines refer to those in the 1971 textbook [?]. The Livermore
stiff solver \texttt{lsode} can be found in reference [?]. The Runge-Kutta routine
of order 7-8 called \texttt{dverk78} appears in the 1991 reference of Enright
[?]. The multistep routines of Adams-Moulton and Adams-Bashforth
are described in standard numerical analysis texts, such as [?]. Taylor
series methods are described in [?]. The Fehlberg variant of RK4 is given
in [?].

Table 11. Differential equation numeric solver results for \texttt{odepack}
routines, applied to the problem \(y' = 4/(1 + x^2), y(0) = 0\).

<table>
<thead>
<tr>
<th>Method</th>
<th>Approximation</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of (\pi)</td>
<td>3.1415926535897932385</td>
<td>20</td>
</tr>
<tr>
<td>Runge-Kutta 4</td>
<td>3.1415926535910</td>
<td>10</td>
</tr>
<tr>
<td>Adams-Moulton \texttt{lsode}</td>
<td>3.1415932355842</td>
<td>6</td>
</tr>
<tr>
<td>Stiff Solver \texttt{lsode}</td>
<td>3.1415931587318</td>
<td>5</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>3.1416249508084</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 12. Differential equation numeric solver results for some \texttt{maple}-
supported routines, applied to the problem \(y' = 4/(1 + x^2), y(0) = 0\).

<table>
<thead>
<tr>
<th>Method</th>
<th>Approximation</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of (\pi)</td>
<td>3.1415926535897932385</td>
<td>20</td>
</tr>
<tr>
<td>Classical RK4</td>
<td>3.141592653589790</td>
<td>15</td>
</tr>
<tr>
<td>Gear</td>
<td>3.141592653688446</td>
<td>11</td>
</tr>
<tr>
<td>Dverk78</td>
<td>3.141592653607044</td>
<td>11</td>
</tr>
<tr>
<td>Taylor Series</td>
<td>3.141592654</td>
<td>10</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>3.141592674191119</td>
<td>8</td>
</tr>
<tr>
<td>Multistep Gear</td>
<td>3.141591703761340</td>
<td>7</td>
</tr>
<tr>
<td>Lsode stiff solver</td>
<td>3.141591733742521</td>
<td>6</td>
</tr>
</tbody>
</table>

Computing \(\ln 2 = \int_0^1 dx/(1 + x)\)

Like the problem of computing \(\pi\), the formula for \(\ln 2\) arises from the
method of quadrature applied to \(y' = 1/(1 + x), y(0) = 0\). The solution
is \(y(x) = \int_0^x dt/(1 + t)\). Application of Simpson’s rule with 150 points
gives \(\ln 2 \approx 0.693147180563800\), which agrees with the exact value
\(\ln 2 = 0.69314718055994530942\) through 12 digits.

More robust numerical integration algorithms produce the exact answer
for \(\ln 2\), within the limitations of machine representation of numbers.
4.4 Computing π, ln 2 and e

Differential equation methods, as in the case of computing π, have results accurate to at least 5 digits, as is shown in Tables 13 and 14. Lower order methods such as classical Euler will produce results accurate to three digits or less.

Table 13. Differential equation numeric solver results for odepack routines, applied to the problem $y' = 1/(1 + x)$, $y(0) = 0$.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Result</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of ln 2</td>
<td>0.69314718055994530942</td>
<td>20</td>
</tr>
<tr>
<td>Adams-Moulton lsode</td>
<td>0.69314720834637</td>
<td>7</td>
</tr>
<tr>
<td>Stiff Solver lsode</td>
<td>0.69314702732982</td>
<td>6</td>
</tr>
<tr>
<td>Runge-Kutta 4</td>
<td>0.69314718056011</td>
<td>11</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>0.69314973055488</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 14. Differential equation numeric solver results for maple-supported routines, applied to the problem $y' = 1/(1 + x)$, $y(0) = 0$.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Result</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of ln 2</td>
<td>0.69314718055994530942</td>
<td>20</td>
</tr>
<tr>
<td>Classical Euler</td>
<td>0.6943987430550621</td>
<td>2</td>
</tr>
<tr>
<td>Classical Heun</td>
<td>0.6931487430550620</td>
<td>5</td>
</tr>
<tr>
<td>Classical RK4</td>
<td>0.6931471805611569</td>
<td>11</td>
</tr>
<tr>
<td>Gear</td>
<td>0.6931471805646605</td>
<td>11</td>
</tr>
<tr>
<td>Gear Poly-extr</td>
<td>0.6931471805664855</td>
<td>11</td>
</tr>
<tr>
<td>Dverk78</td>
<td>0.6931471805696015</td>
<td>11</td>
</tr>
<tr>
<td>Adams-Bashforth</td>
<td>0.6931471793736208</td>
<td>8</td>
</tr>
<tr>
<td>Adams-Bashforth-Moulton</td>
<td>0.6931471806484283</td>
<td>10</td>
</tr>
<tr>
<td>Taylor Series</td>
<td>0.6931471806</td>
<td>10</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>0.6931481489496502</td>
<td>5</td>
</tr>
<tr>
<td>Lsode stiff solver</td>
<td>0.6931470754312113</td>
<td>7</td>
</tr>
<tr>
<td>Rosenbrock stiff solver</td>
<td>0.6931473787603164</td>
<td>6</td>
</tr>
</tbody>
</table>

Computing e from $y' = y$, $y(0) = 1$

The initial attack on the problem uses classical RK4 with $f(x,y) = y$. After 300 steps, classical RK4 finds the correct answer for e to 12 digits: $e \approx 2.71828182846$. In Table 15, the details appear of how to accomplish the calculation using matlab-compatible code. Corresponding maple code appears in Table 16 and in Table 17. Additional code for octave and scilab appear in Tables 18 and 19.
Table 15. Numerical solution of $y' = y$, $y(0) = 1$.
Classical RK4 with 300 subdivisions using matlab-compatible code.

```
function [x,y]=rk4(x0,y0,x1,n,f)
x=x0;y=y0;h=(x1-x0)/n;
for i=1:n;
k1=h*f(x,y);
k2=h*f(x+h/2,y+k1/2);
k3=h*f(x+h/2,y+k2/2);
k4=h*f(x+h,y+k3);
y=y+(k1+2*k2+2*k3+k4)/6;
x=x+h;
end
```

```
function yp = ff(x,y)
yp= y;
[x,y]=rk4(0,1,1,300,ff)
```

Table 16. Numerical solution of $y' = y$, $y(0) = 1$ by maple internal classical RK4 code.

```
de:=diff(y(x),x)=y(x):
ic:=y(0)=1:
Y:=dsolve({de,ic},y(x),
          type=numeric,method=classical[rk4]):
Y(1);
```

Table 17. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions using maple-compatible code.

```
rk4 := proc(x0,y0,x1,n,f)
    local x,y,k1,k2,k3,k4,h,i:
    x=x0: y=y0: h=(x1-x0)/n:
    for i from 1 to n do
        k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):
        k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):
        y:=evalf(y+(k1+2*k2+2*k3+k4)/6,
              Digits+4):
        x:=x+h:
    od:
    RETURN(y):
end:
f:=(x,y)->y;
rk4(0,1,1,300,f);
```

A matlab m-file "rk4.m" is loaded into scilab-4.0 by `getf("rk4.m")`.
Most scilab code is loaded by using default file extension `.sci` e.g.,
`rk4scilab.sci` is a scilab file name. This code must obey scilab rules. An example appears below in Table 18.
Table 18. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions, using scilab-4.0 code.

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[x,y]=rk4sci(x0,y0,x1,n,f)</code></td>
<td><code>function yp = ff(x,y)</code></td>
</tr>
<tr>
<td><code>x=x0; y=y0; h=(x1-x0)/n;</code></td>
<td><code>yp= y;</code></td>
</tr>
<tr>
<td><code>for i=1:n</code></td>
<td><code>end</code></td>
</tr>
<tr>
<td><code>k1=h*f(x,y)</code></td>
<td><code>endfunction</code></td>
</tr>
<tr>
<td><code>k2=h*f(x+h/2,y+k1/2)</code></td>
<td><code>[x,y]=rk4sci(0,1,1,300,ff)</code></td>
</tr>
<tr>
<td><code>k3=h*f(x+h/2,y+k2/2)</code></td>
<td><code>k4=h*f(x+h,y+k3)</code></td>
</tr>
<tr>
<td><code>y=y+(k1+2*k2+2*k3+k4)/6</code></td>
<td><code>x=x+h;</code></td>
</tr>
<tr>
<td><code>x=x+h</code></td>
<td><code>endfunction</code></td>
</tr>
</tbody>
</table>

The popularity of octave as a free alternative to matlab has kept it alive for a number of years. Writing code for octave is similar to matlab and scilab, however readers are advised to look at sample code supplied with octave before trying complicated projects. In Table 19 can be seen some essential agreements and differences between the languages.

Table 19. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions using octave-2.1.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[x,y]=rk4oct(x0,y0,x1,n,f)</code></td>
</tr>
<tr>
<td><code>x=x0; y=y0; h=(x1-x0)/n;</code></td>
</tr>
<tr>
<td><code>for i=1:n</code></td>
</tr>
<tr>
<td><code>k1=h*feval(f,x,y);</code></td>
</tr>
<tr>
<td><code>k2=h*feval(f,x+h/2,y+k1/2);</code></td>
</tr>
<tr>
<td><code>k3=h*feval(f,x+h/2,y+k2/2);</code></td>
</tr>
<tr>
<td><code>k4=h*feval(f,x+h,y+k3);</code></td>
</tr>
<tr>
<td><code>y=y+(k1+2*k2+2*k3+k4)/6;</code></td>
</tr>
<tr>
<td><code>x=x+h;</code></td>
</tr>
</tbody>
</table>

Exercises 4.4

Computing π. Compute $\pi = y(1)$ from the initial value problem $y' = 4/(1 + x^2)$, $y(0) = 0$, using the given method.

1. Use the Rectangular integration rule. Determine the number of steps for 5-digit precision.

2. Use the Rectangular integration rule. Determine the number of steps for 8-digit precision.

3. Use the Trapezoidal integration rule. Determine the number of steps for 5-digit precision.

4. Use the Trapezoidal integration rule. Determine the number of steps for 8-digit precision.
rule. Determine the number of steps for 8-digit precision.

5. Use classical RK4. Determine the number of steps for 5-digit precision.

6. Use classical RK4. Determine the number of steps for 10-digit precision.

7. Use computer algebra system assist for RK4. Report the number of digits of precision using system defaults.

8. Use numerical workbench assist for RK4. Report the number of digits of precision using system defaults.

Computing ln(2). Compute \(\ln(2) = y(1) \) from the initial value problem \(y' = \frac{1}{1+x} \), \(y(0) = 0 \), using the given method.

9. Use the Rectangular integration rule. Determine the number of steps for 5-digit precision.

10. Use the Rectangular integration rule. Determine the number of steps for 8-digit precision.

11. Use the Trapezoidal integration rule. Determine the number of steps for 5-digit precision.

12. Use the Trapezoidal integration rule. Determine the number of steps for 8-digit precision.

13. Use classical RK4. Determine the number of steps for 5-digit precision.

15. Use computer algebra system assist for RK4. Report the number of digits of precision using system defaults.

Computing \(e \). Compute \(e = y(1) \) from the initial value problem \(y' = y \), \(y(0) = 1 \), using the given computer assist. Report the number of digits of precision using system defaults.

17. Improved Euler method, also known as Heun’s method.

18. RK4 method.

19. RKF45 method.

Stiff Differential Equation. The flame propagation equation \(y' = y^2(1-y) \) is known to be stiff for initial conditions \(y(0) = y_0 \) with \(y_0 > 0 \) and small. Use classical RK4 and then a stiff solver to compute and plot the solution \(y(t) \) in each case. Expect 3000 steps with RK4 versus 100 with a stiff solver.

The exact solution of this equation can be expressed in terms of the Lambert function \(w(u) \), defined by \(u = w(x) \) if and only if \(u e^u = x \). For example, \(y(0) = 0.01 \) gives

\[
y(t) = \frac{1}{w(99e^{99-t}) + 1}.
\]

21. \(y(0) = 0.01 \)

22. \(y(0) = 0.005 \)

23. \(y(0) = 0.001 \)

24. \(y(0) = 0.0001 \)
4.5 Earth to the Moon

A projectile launched from the surface of the earth is attracted both by the earth and the moon. The altitude $r(t)$ of the projectile above the earth is known to satisfy the initial value problem (see Technical Details page 244)

$$\begin{align*}
r''(t) &= -\frac{Gm_1}{(R_1 + r(t))^2} + \frac{Gm_2}{(R_2 - R_1 - r(t))^2}, \\
r(0) &= 0, & r'(0) &= v_0.
\end{align*}$$

The unknown initial velocity v_0 of the projectile is given in meters per second. The constants in (1) are determined as follows.

$$\begin{align*}
G &= 6.6726 \times 10^{-11} \text{ N}\cdot\text{m}^2/\text{kg}^2 & \text{Universal gravitation constant}, \\
m_1 &= 5.975 \times 10^{24} \text{ kg} & \text{Mass of the earth}, \\
m_2 &= 7.36 \times 10^{22} \text{ kg} & \text{Mass of the moon}, \\
R_1 &= 6,378,000 \text{ m} & \text{Radius of the earth}, \\
R_2 &= 384,400,000 \text{ m} & \text{Distance from the earth’s center to the moon’s center}.
\end{align*}$$

Jules Verne. In his 1865 novel *From the Earth to the Moon*, Jules Verne asked what initial velocity must be given to the projectile in order to reach the moon. The question in terms of equation (1) becomes:

What minimal value of v_0 causes the projectile to have zero net acceleration at some point between the earth and the moon?

The projectile only has to travel a distance R equal to the surface-to-surface distance between the earth and the moon. The altitude $r(t)$ of the projectile must satisfy $0 \leq r \leq R$. Given v_0 for which the net acceleration is zero, $r''(t) = 0$ in (1), then the projectile has reached a critical altitude r^*, where gravitational effects of the moon take over and the projectile will fall to the surface of the moon.

Let $r''(t) = 0$ in (1) and substitute r^* for $r(t)$ in the resulting equation. Then

$$r^* = \frac{R_2}{1 + \sqrt{m_2/m_1}} - R_1 \approx 339,260,779 \text{ m}.$$

Using energy methods (see Technical details, page 244), it is possible to calculate exactly the minimal earth-to-moon velocity v_0^* required for the projectile to just reach critical altitude r^*:

$$v_0^* \approx 11067.19091 \text{ m/s}.$$
A Numerical Experiment. The value $v_0^* \approx 11067.19091$ in (3) will be verified experimentally. As part of this experiment, the flight time is estimated. Such a numerical experiment must adjust the initial velocity v_0 in initial value problem (1) so that $r(t)$ increases from 0 to R. Graphical analysis of a solution $r(t)$ for low velocities v_0 gives insight into the problem; see Figure 7.

Figure 7. Jules Verne Problem.
The solution $r(t)$ of (1) for $v_0 = 1000$. The projectile rises to a maximum height of about 51,530 meters, then it falls back to earth. The trip time is 206 seconds.

The numerical experiment solves (1) using \texttt{lsode}3, then the solution is graphed, to see if the projectile falls back to earth (as in Figure 7) or if it reaches an altitude near r^* and then falls to the moon. Suitable starting values for the initial velocity v_0 and the trip time T are $v_0 = 1000$ and $T = 210$ (see Figure 7), in the case when the projectile falls back to earth. The projectile travels to the moon when the r-axis of the graphic has maximum greater than $r^* \approx 339,260,779$ meters. The logic is that this condition causes the gravitation effects of the moon to be strong enough to force the projectile to fall to the moon.

In Table 20 appears \texttt{maple} initialization code. In Table 21, group 2 is executed a number of times, to refine estimates for the initial velocity v_0 and the trip time T. A summary of some estimates appear in Table 22. The graphics produced along the way resemble Figure 7 or Figure 8. A successful trip to the moon is represented in Figure 8, which uses $v_0 = 11068$ meters per second and $T = 515250$ seconds.

Figure 8. Experimental trip to the moon.
The initial velocity is $v_0 = 24,764$ miles per hour and the trip time is 143 hours. See Table 22 for details about how these values were obtained.

3The acronym \texttt{lsode} stands for the Livermore Laboratory numerical stiff solver for ordinary differential equations. The computer algebra system \texttt{maple} documents and implements this algorithm. In \texttt{maple} versions after 9, replace \texttt{method=lsode} by \texttt{stiff=true} to improve speed.
Table 20. Initialization code in maple for the numerical experiment.
Group 1 defines seven constants $G, m_1, m_2, R_1, R_2, R_3, R$ and computes values $r^* \approx 339, 260, 779$ and $v_0^* \approx 11067.19091$.

```maple
# Group 1: Constants plus rstar and v0star
G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:
R1:=6.378e6: R2:=3.84e8: R3:=1.74e6:
R:=R2-R1-R3:
ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)];
rstar:=ans[1];
FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):
v0star:=sqrt(2*(FF(0)-FF(rstar)));
```

Table 21. Iteration code in maple for the numerical experiment.
Group 2 plots a graphic for given v_0 and T. A successful trip to the moon must use velocity $v_0 > v_0^* \approx 11067.19091$. The relation $\max_{0 \leq t \leq T} Y(t) > r^* \approx 339, 260, 779$ must be valid. Finally, $Y(T) \geq R$ must hold.

```maple
# Group 2: Iteration code
v0:=1000: # v0<v0star. Projectile falls to earth.
de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t)-r)^2:
ic:=r(0)=0,D(r)(0)=v0:
p:=dsolve({de,ic},r(t),
type=numeric,method=lsode,startinit=true);
Y:=t->rhs(p(t)[2]):
T:=200: # Guess the trip time T
plot('Y(t)',t=0..T);
# Plot done. Change v0, T and re-execute group 2.
```

Table 22. Experimental results with the lsode solver to obtain estimates for the initial velocity v_0 and the trip time T.

<table>
<thead>
<tr>
<th>v_0</th>
<th>T</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>11000</td>
<td>38500</td>
<td>$r(T/2) = 1.872 \times 10^8$, $r(T) = 0$</td>
</tr>
<tr>
<td>12000</td>
<td>80000</td>
<td>$r(T) > r^* \approx 3.39 \times 10^8$</td>
</tr>
<tr>
<td>11125</td>
<td>200000</td>
<td>$r(T) > r^*$</td>
</tr>
<tr>
<td>11060</td>
<td>780000</td>
<td>$r(T/2) = 2.918 \times 10^8$, $r(T) = 0$</td>
</tr>
<tr>
<td>11070</td>
<td>377500</td>
<td>$r(T) > r^*$</td>
</tr>
<tr>
<td>11068</td>
<td>515250</td>
<td>$r(T) \approx R$</td>
</tr>
</tbody>
</table>

Exact trip time. The time T for a trip with velocity $v_0 = 11068$ can be computed once an approximate value for the trip time is known. For instance, if $T = 515250$ gives a successful plot, but $T = 515150$ does not, then the exact value of T is between 515250 and 515150. The computer algebra system can be used to determine the more precise value.
\[T = 515206.1757, \text{ as follows.} \]

Group 2
\[v_0 := 11068: \text{ # Projectile reaches the moon.} \]
\[\text{de} := \frac{\partial^2 r(t)}{\partial t^2} = -\frac{G m_1}{(r(t) + R_1)^2} + \frac{G m_2}{(R_2 - R_1 - r(t))^2}; \]
\[\text{ic} := r(0) = 0, D(r)(0) = v_0; \]
\[p := \text{dsolve}\{\text{de,ic}\}, r(t), \text{type=numeric,method=lsode,startinit=true}; \]
\[Y := t \rightarrow \text{rhs}(p(t)[2]); \]
\[\text{fsolve}('Y(t)'=R,t,515150..515250); \]

"T==515206.1757"

Technical details for (1): To derive (1), it suffices to write down a competition between the Newton’s second law force relation \(mr''(t) \) and the sum of two forces due to gravitational attraction for the earth and the moon. Here, \(m \) stands for the mass of the projectile.

Gravitational force for the earth. This force, by Newton’s universal gravitation law, has magnitude
\[
F_1 = \frac{G m_1 m}{R_3^2}
\]
where \(m_1 \) is the mass of the earth, \(G \) is the universal gravitation constant and \(R_3 \) is the distance from the projectile to the center of the earth: \(R_3 = R_1 + r(t) \).

Gravitational force for the moon. Similarly, this force has magnitude
\[
F_2 = \frac{G m_2 m}{R_4^2}
\]
where \(m_2 \) is the mass of the moon and \(R_4 \) is the distance from the projectile to the center of the moon: \(R_4 = R_2 - R_1 - r(t) \).

Competition between forces. The force equation is
\[
mr''(t) = -F_1 + F_2
\]
due to the directions of the force vectors. Simplifying the relations and canceling \(m \) gives equation (1).

Technical details for (3): To justify the value for \(v_0 \), multiply equation (1) by \(r' \) and integrate the new equation from \(t = 0 \) to \(t = t_0 \) to get
\[
\frac{1}{2} (r'(t_0))^2 = F(r(t_0)) - F(0) + \frac{1}{2} v_0^2, \quad \text{where}
\]
\[
F(r) = \frac{G m_1}{R_1 + r} + \frac{G m_2}{R_2 - R_1 - r}.
\]
The expression \(F(r) \) is minimized when \(F'(r) = 0 \) or else at \(r = 0 \) or \(r = R \). The right side of (1) is \(F'(r) \), hence \(F(r) \) has unique critical point \(r = r^* \). Compute \(F(0) = 62522859.35 \), \(F(r^*) = 1281502.032 \) and \(F(R) = 3865408.696 \). Then the minimum of \(F(r) \) is at \(r = r^* \) and \(F(r^*) \leq F(r(t_0)) \).

The left side of (4) is nonnegative, therefore also the right side is nonnegative, giving \(\frac{1}{2} v_0^2 \geq F(0) - F(r(t_0)) \). If the projectile ever reaches altitude \(r^* \), then \(r(t_0) = r^* \) is allowed and \(v_0 \geq \sqrt{2F(0) - 2F(r^*)} \approx 11067.19091 \). Restated,
4.5 Earth to the Moon

$v_0 < 11067.19091$ implies the projectile never reaches altitude r^*, hence it falls back to the earth. On the other hand, if $v_0 > 11067.19092$, then by (4) and $F(r^*) \leq F(r)$ it follows that $r'(t) > 0$ and therefore the projectile cannot return to earth. That is, $r(t) = 0$ for some $t > 0$ can’t happen.

In summary, the least launch velocity v_0^* which allows $r(t) = r^*$ for some $t > 0$ is given by the formulas

$$v_0^* = \sqrt{2F(0) - 2F(r^*)}, \quad F(r) = \frac{Gm_1}{R_1 + r} + \frac{Gm_2}{R_2 - R_1 - r}.$$

This completes the proof of equation (3).

Exercises 4.5

Critical Altitude r^*. The symbol r^* is the altitude $r(t)$ at which gravitational effects of the moon take over, causing the projectile to fall to the moon.

1. Justify from the differential equation that $r''(t) = 0$ at $r^* = r(t)$ implies the first relation in (2):

$$\frac{Gm_2}{(R_2 - R_1 - r^*)^2} - \frac{Gm_1}{(R_1 + r^*)^2} = 0.$$

2. Solve the relation of the previous exercise for r^*, symbolically, to obtain the second equation of (2):

$$r^* = \frac{R_2}{1 + \sqrt{m_2/m_1}} - R_1.$$

3. Use the previous exercise and values for the constants R_1, R_2, m_1, m_2 to obtain the approximation $r^* = 339,260,779$ meters.

4. Determine the effect on r^* for a one percent error in measurement m_2. Replace m_2 by $0.99m_2$ and $1.01m_2$ in the formula for r^* and report the two estimated critical altitudes.

Escape Velocity v_0^*. The symbol v_0^* is the velocity $r'(0)$ such that $\lim_{t \to \infty} r(t) = \infty$, but smaller launch velocities will cause the projectile to fall back to the earth. Throughout, define

$$F(r) = \frac{Gm_1}{R_1 + r} + \frac{Gm_2}{R_2 - R_1 - r}.$$

5. Let $v_0 = r'(0)$, $r^* = r(t_0)$. Derive the formula

$$\frac{1}{2} (r'(t_0))^2 = F(r^*) - F(0) + \frac{1}{2} v_0^2$$

which appears in the proof details.

6. Verify using the previous exercise that $r'(t_0) = 0$ implies

$$v_0^* = \sqrt{2(F(0) - F(r^*))}.$$

7. Verify by hand calculation that $v_0^* \approx 11067.19091$ meters per second.

8. Argue by mathematical proof that $F(r)$ is not minimized at the endpoints of the interval $0 \leq r \leq R$.

Numerical Experiments. Assume values given in the text for physical constants. Perform the given experiment, using numerical software, on initial value problem (1), page 241. The cases when $v_0 > v_0^*$ escape the earth, while the others fall back to earth.

9. RK4 solver, $v_0 = 11068$, $T = 515000$. Plot the solution on $0 \leq t \leq T$.

10. Stiff solver, $v_0 = 11068$, $T = 515000$. Plot the solution on $0 \leq t \leq T$.

11. RK4 solver, $v_0 = 11067.2$, $T = 800000$. Plot the solution on $0 \leq t \leq T$.

12. Stiff solver, \(v_0 = 11067.2 \), \(T = 800000 \). Plot the solution on \(0 \leq t \leq T \).

13. RK4 solver, \(v_0 = 11067 \), \(T = 1000000 \). Plot the solution on \(0 \leq t \leq T \).

14. Stiff solver, \(v_0 = 11067 \), \(T = 1000000 \). Plot the solution on \(0 \leq t \leq T \).

15. RK4 solver, \(v_0 = 11066 \), \(T = 800000 \). Plot the solution on \(0 \leq t \leq T \).

16. Stiff solver, \(v_0 = 11066 \), \(T = 800000 \). Plot the solution on \(0 \leq t \leq T \).

17. RK4 solver, \(v_0 = 11065 \). Find a suitable value \(T \) which shows that the projectile falls back to earth, then plot the solution on \(0 \leq t \leq T \).

18. Stiff solver, \(v_0 = 11065 \). Find a suitable value \(T \) which shows that the projectile falls back to earth, then plot the solution on \(0 \leq t \leq T \).

19. RK4 solver, \(v_0 = 11070 \). Find a suitable value \(T \) which shows that the projectile falls to the moon, then plot the solution on \(0 \leq t \leq T \).

20. Stiff solver, \(v_0 = 11070 \). Find a suitable value \(T \) which shows that the projectile falls to the moon, then plot the solution on \(0 \leq t \leq T \).
4.6 Skydiving

A skydiver of 160 pounds jumps from a hovercraft at 15,000 feet. The fall is mostly vertical from zero initial velocity, but there are significant effects from air resistance until the parachute opens at 5,000 feet. The resistance effects are determined by the skydiver’s clothing and body shape.

Velocity Model. Assume the skydiver’s air resistance is modeled by a force equation

\[F(v) = av + bv^2 + cv^3. \]

The constants \(a, b, c \) are given by the formulas

\[a = 0.009, \quad b = 0.0008, \quad c = 0.0001. \]

In particular, the force \(F(v) \) is positive for \(v \) positive. According to Newton’s second law, the velocity \(v(t) \) of the skydiver satisfies

\[mv'(t) = mg - F(v). \]

We assume \(mg = 160 \) pounds and \(g \approx 32 \) feet per second per second. The velocity model is

\[v'(t) = 32 - \frac{32}{160} \left(0.009v(t) + 0.0008v^2(t) + 0.0001v^3(t) \right), \quad v(0) = 0. \]

Distance Model. The distance \(x(t) \) traveled by the skydiver, measured from the hovercraft, is given by the distance model

\[x'(t) = v(t), \quad x(0) = 0. \]

The velocity is expected to be positive throughout the flight. Because the parachute opens at 5000 feet, at which time the velocity model must be replaced the open parachute model (not discussed here), the distance \(x(t) \) increases with time from 0 feet to its limiting value of 10000 feet. Values of \(x(t) \) from 10000 to 15000 feet make sense only for the open parachute model.

Terminal Velocity. The terminal velocity is an equilibrium solution \(v(t) = v_\infty \) of the velocity model, therefore constant \(v_\infty \) satisfies

\[32 - \frac{32}{160} \left(0.009v_\infty + 0.0008v_\infty^2 + 0.0001v_\infty^3 \right) = 0. \]

A numerical solver is applied to find the value \(v_\infty = 114.1 \) feet per second, which is about 77.8 miles per hour. For the solver, we define \(f(v) = 32 - F(v) \) and solve \(f(v) = 0 \) for \(v \). Some Maple details:

\[
\begin{align*}
\text{f:=v->32} & \text{-(32/160)*(0.009*v+0.0008*v^2+0.0001*v^3);} \\
\text{fsolve(f(v)=0,v);} & \quad \# 114.1032777 \text{ ft/sec} \\
60*60*\text{fsolve(f(v)=0,v)}/5280; & \quad \# 77.79768934 \text{ mi/hr}
\end{align*}
\]
A Numerical Experiment. The Runge-Kutta method will be applied to produce a table which contains the elapsed time t, the skydiver velocity $v(t)$ and the distance traveled $x(t)$, up until the distance reaches nearly 10000 feet, whereupon the parachute opens.

The objective here is to illustrate practical methods of table production in a computer algebra system or numerical laboratory. It is efficient in these computational systems to phrase the problem as a system of two differential equations with two initial conditions.

System Conversion. The velocity substitution $v(t) = x'(t)$ used in the velocity model gives us two differential equations in the unknowns $x(t)$, $v(t)$:

$$x'(t) = v(t), \quad v'(t) = g - \frac{1}{m} F(v(t)).$$

Define $f(v) = g - \frac{1}{m} F(v)$. The path we follow is to execute the maple code below, which produces the table that follows using the default Runge-Kutta-Fehlberg algorithm.

```maple
f:=unapply(32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);
de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));
ic:=x(0)=0,v(0)=0; opts:=numeric, output=listprocedure;
p:=dsolve({de1,de2,ic},[x(t),v(t)], opts);
X:=eval(x(t),p); V:=eval(v(t),p);
fmt:="%10.2f %10.2f %10.2f"
seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);
```

<table>
<thead>
<tr>
<th>t</th>
<th>$x(t)$</th>
<th>$v(t)$</th>
<th>t</th>
<th>$x(t)$</th>
<th>$v(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>331.26</td>
<td>106.84</td>
<td>50.00</td>
<td>5456.76</td>
<td>114.10</td>
</tr>
<tr>
<td>10.00</td>
<td>892.79</td>
<td>113.97</td>
<td>55.00</td>
<td>6027.28</td>
<td>114.10</td>
</tr>
<tr>
<td>15.00</td>
<td>1463.15</td>
<td>114.10</td>
<td>60.00</td>
<td>6597.80</td>
<td>114.10</td>
</tr>
<tr>
<td>20.00</td>
<td>2033.67</td>
<td>114.10</td>
<td>65.00</td>
<td>7168.31</td>
<td>114.10</td>
</tr>
<tr>
<td>25.00</td>
<td>2604.18</td>
<td>114.10</td>
<td>70.00</td>
<td>7738.83</td>
<td>114.10</td>
</tr>
<tr>
<td>30.00</td>
<td>3174.70</td>
<td>114.10</td>
<td>75.00</td>
<td>8309.35</td>
<td>114.10</td>
</tr>
<tr>
<td>35.00</td>
<td>3745.21</td>
<td>114.10</td>
<td>80.00</td>
<td>8879.86</td>
<td>114.10</td>
</tr>
<tr>
<td>40.00</td>
<td>4315.73</td>
<td>114.10</td>
<td>85.00</td>
<td>9450.38</td>
<td>114.10</td>
</tr>
<tr>
<td>45.00</td>
<td>4886.25</td>
<td>114.10</td>
<td>90.00</td>
<td>10020.90</td>
<td>114.10</td>
</tr>
</tbody>
</table>

The table says that the flight time to parachute open at 10,000 feet is about 90 seconds and the terminal velocity 114.10 feet/sec is reached in about 15 seconds.

More accurate values for the flight time 89.82 to 10,000 feet and time 14.47 to terminal velocity can be determined as follows.

```maple
fsolve(X(t)=10000,t,80..95);
fsolve(V(t)=114.10,t,2..20);
```
Alternate Method. Another way to produce the table is to solve the velocity model numerically, then determine
\[x(t) = \int_0^t v(r) dr \] by numerical integration. Due to accuracy considerations, a variant of Simpson’s rule is used, called the Newton-cotes rule. The maple implementation of this idea follows.

The first method of conversion into two differential equations is preferred, even though the alternate method reproduces the table using only the textbook material presented in this chapter.

\[
f:=\text{unapply}(32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);
de:=\text{diff}(v(t),t)=f(v(t)); \text{ic:=v(0)=0};
q:=\text{dsolve}\{(de,ic),v(t),\text{numeric}\};
V:=t->\text{rhs}(q(t)[2]);
X:=u->\text{evalf}\{(\text{Int}(V,0..u,\text{continuous},\text{_NCrule}))\};
\text{fmt:}=%10.2f %10.2f %10.2f
\text{seq(printf(fmt,t,X(5*t),V(5*t)),t=0..18)};
\]

Ejected Baggage. Much of what has been done here applies as well to an ejected parcel, instead of a skydiver. What changes is the force equation
\[F(v) \], which depends upon the parcel exterior and shape. The distance model remains the same, but the restraint \(0 \leq x \leq 10000 \) no longer applies, since no parachute opens. We expect the parcel to reach terminal velocity in 5 to 10 seconds and hit the ground at that speed.

Variable Mass. The mass of a skydiver can be time-varying. For instance, the diver lets water leak from a reservoir. This kind of problem assumes mass \(m(t) \), position \(x(t) \) and velocity \(v(t) \) for the diver. Then Newton’s second law gives a position-velocity model

\[
x'(t) = v(t),
(m(t)v(t))' = G(t,x(t),v(t)).
\]

The problem is similar to rocket propulsion, in which expended fuel decreases the in-flight mass of the rocket. Simplifying assumptions make it possible to present formulas for \(m(t) \) and \(G(t,x,v) \), which can be used by the differential equation solver.

Exercises 4.6

Terminal Velocity. Assume force
\[F(v) = av + bv^2 + cv^3 \] and \(g = 32, m = 160/g \). Using computer assist, find the terminal velocity \(v_\infty \) from the velocity model

\[
(1) \quad v' = g - \frac{1}{m} F(v), \quad v(0) = 0.
\]

1. \(a = 0, b = 0 \) and \(c = 0.0002 \).
2. \(a = 0, b = 0 \) and \(c = 0.00015 \).
3. \(a = 0, b = 0.0007 \) and \(c = 0.00009 \).
4. \(a = 0, b = 0.0007 \) and \(c = 0.000095 \).
5. \(a = 0.009, b = 0.0008 \) and \(c = 0.00015 \).
6. \(a = 0.009, b = 0.00075 \) and \(c = 0.00015 \).
7. \(a = 0.009, b = 0.0007 \) and \(c = 0.00009 \).
8. \(a = 0.009, b = 0.00077 \) and \(c = 0.00009 \).
9. \(a = 0.009, b = 0.0007 \) and \(c = 0 \).
10. \(a = 0.009, b = 0.00077 \) and \(c = 0 \).

Numerical Experiment. Assume the skydiver problem (1) with \(g = 32 \) and constants \(m, a, b, c \) supplied below. Using computer assist, apply a numerical method to produce a table for the elapsed time \(t \) and the distance \(x(t) \). The table must end at \(x(t) \approx 10000 \) feet, which determines the flight time.
11. \(m = 160/g, a = 0, b = 0 \) and \(c = 0.0002 \).
12. \(m = 160/g, a = 0, b = 0 \) and \(c = 0.00015 \).
13. \(m = 130/g, a = 0, b = 0.0007 \) and \(c = 0.00009 \).
14. \(m = 130/g, a = 0, b = 0.0007 \) and \(c = 0.000095 \).
15. \(m = 180/g, a = 0.009, b = 0.0008 \) and \(c = 0.00015 \).
16. \(m = 180/g, a = 0.009, b = 0.00075 \) and \(c = 0.00015 \).
17. \(m = 170/g, a = 0.009, b = 0.0007 \) and \(c = 0.00009 \).
18. \(m = 170/g, a = 0.009, b = 0.00077 \) and \(c = 0.00009 \).

19. \(m = 200/g, a = 0.009, b = 0.0007 \) and \(c = 0 \).
20. \(m = 200/g, a = 0.009, b = 0.00077 \) and \(c = 0 \).

Flight Time. Assume the skydiver problem (1) with \(g = 32 \) and constants \(m, a, b, c \) supplied below. Using computer assist, apply a numerical method to find accurate values for the flight time to 10,000 feet and the time required to reach terminal velocity.
21. \(mg = 160, a = 0.0095, b = 0.0007 \) and \(c = 0.000092 \).
22. \(mg = 160, a = 0.0097, b = 0.00075 \) and \(c = 0.000095 \).
23. \(mg = 240, a = 0.0092, b = 0.0007 \) and \(c = 0 \).
24. \(mg = 240, a = 0.0095, b = 0.00075 \) and \(c = 0 \).

Ejected Baggage. Baggage of 45 pounds is dropped from a hovercraft at 15,000 feet. The fall is mostly vertical from zero initial velocity, but there are significant effects from air resistance. The resistance effects are determined by the baggage shape and surface construction. Assume air resistance force \(F(v) = av + bv^2 + cv^3 \), \(g = 32 \) and \(mg = 45 \). Using computer assist, find accurate values for the flight time to the ground and the terminal velocity. Estimate the time required to reach 99.95% of terminal velocity.
25. \(a = 0.0095, b = 0.0007, c = 0.00009 \).
26. \(a = 0.0097, b = 0.00075, c = 0.00009 \).
27. \(a = 0.0099, b = 0.0007, c = 0.00009 \).
28. \(a = 0.0099, b = 0.00075, c = 0.00009 \).
4.7 Lunar Lander

A lunar lander goes through free fall to the surface of the moon, its descent controlled by retrorockets that provide a constant deceleration to counter the effect of the moon’s gravitational field.

The retrorocket control is supposed to produce a **soft touchdown**, which means that the velocity $v(t)$ of the lander is zero when the lander touches the moon’s surface. To be determined:

$$H = \text{height above the moon’s surface for retrorocket activation},$$

$$T = \text{flight time from retrorocket activation to soft touchdown}.$$

Investigated here are two models for the lunar lander problem. In both cases, it is assumed that the lander has mass m and falls in the direction of the moon’s gravity vector. The initial speed of the lander is assumed to be v_0. The retrorockets supply a constant thrust deceleration g_1. Either the fps or mks unit system will be used. Expended fuel ejected from the lander during thrust will be ignored, keeping the lander mass constantly m.

The distance $x(t)$ traveled by the lander t time units after retrorocket activation is given by

$$x(t) = \int_0^t v(r)dr, \quad 0 \leq t \leq T.$$

Therefore, H and T are related by the formulas

$$v(T) = 0, \quad x(T) = H.$$

Constant Gravitational Field. Let g_0 denote the constant acceleration due to the moon’s gravitational field. Assume given initial velocity v_0 and the retrorocket thrust deceleration g_1. Define $A = g_1 - g_0$, the effective thrust. Set the origin of coordinates at the center of mass of the lunar lander. Let vector \vec{i} have tail at the origin and direction towards the center of the moon. The force on the lander is $mv'(t)\vec{i}$ by Newton’s second law. The forces $mg_0\vec{i}$ and $-mg_1\vec{i}$ add to $-mA\vec{i}$. Force competition $mv'(t)\vec{i} = -mA\vec{i}$ gives the velocity model

$$mv'(t) = -mA, \quad v(0) = v_0.$$

This quadrature-type equation is solved routinely to give

$$v(t) = -At + v_0, \quad x(t) = -At^2/2 + v_0t.$$

The equation $v(T) = 0$ gives $T = v_0/A$ and $H = x(T) = v_0^2/(2A)$.
Numerical illustration. Let $v_0 = 1200$ miles per hour and $A = 30000$ miles per hour per hour. We compute values $T = 1/25$ hours = 2.4 minutes and $H = x(T) = 24$ miles. A maple implementation appears below.

$$v0:=1200; A:=30000;$$

$$X:=t->-A*t^2/2+v0*t;$$

$$T:=(v0/A): (T*60.0).'min',X(T).'miles';$$

$$A1:=A*2.54*12*5280/100/3600/3600; \# \text{mks units}$$

$$v1:=v0*12*2.54*5280/100/3600; \# \text{mks units}$$

$$\text{evalf(convert(X(T),units,miles,meters));}$$

The constant field model predicts that the retrorockets should be turned on 24 miles above the moon’s surface with soft landing descent time of 2.4 minutes. It turns out that a different model predicts that 24 miles is too high, but only by a small amount. We investigate now this alternative model, based upon replacing the constant gravitational field by a variable field.

Variable Gravitational Field. The system of units will be the mks system. Assume the lunar lander is located at position P above the moon’s surface. Define symbols:

$m =$ mass of the lander in kilograms,

$M = 7.35 \times 10^{22}$ kilograms is the mass of the moon,

$R = 1.74 \times 10^6$ meters is the mean radius of the moon,

$G = 6.6726 \times 10^{-11}$ is the universal gravitation constant, in mks units,

$H =$ height in meters of position P above the moon’s surface,

$v_0 =$ lander velocity at P in meters per second,

$g_0 = GM/R^2 =$ constant acceleration due to the moon’s gravity in meters per second per second,

$g_1 =$ constant retrorocket thrust deceleration in meters per second per second,

$A = g_1 - g_0 =$ effective retrorocket thrust deceleration in meters per second per second, constant field model,

$t =$ time in seconds,

$x(t) =$ distance in meters from the lander to position P,

$v(t) = x'(t) =$ velocity of the lander in meters per second.
The project is to find the height H above the moon’s surface and the descent time T for a soft landing, using fixed retrorockets at time $t = 0$. The origin of coordinates will be P and \vec{i} is directed from the lander to the moon. Then $x(t)\vec{i}$ is the lander position at time t. The initial conditions are $x(0) = 0, v(0) = v_0$. Let $g_0(t)$ denote the variable acceleration of the lander due to the moon’s gravitational field. Newton’s universal gravitation law applied to point masses representing the lander and the moon gives the expression

$$\text{Force} = mg_0(t)\vec{i} = \frac{GmM}{(R + H - x(t))^2}\vec{i}.$$

The force on the lander is $mx''(t)\vec{i}$ by Newton’s second law. The force is also $mg_0(t)\vec{i} - mg_1\vec{i}$. Force competition gives the second order distance model

$$mx''(t) = -mg_1 + \frac{mMG}{(R + H - x(t))^2}, \quad x(0) = 0, \quad x'(0) = v_0.$$

The technique from the Jules Verne problem applies: multiply the differential equation by $x'(t)$ and integrate from $t = 0$ to the soft landing time $t = T$. The result:

$$\frac{(x'(t))^2}{2} \bigg|_{t=0}^{t=T} = -g_1(x(T) - x(0)) + \frac{GM}{R + H - x(t)} \bigg|_{t=0}^{t=T}.$$

Using the relations $x(0) = 0, x'(0) = v_0, x'(T) = 0$ and $x(T) = H$ gives a simplified implicit equation for H:

$$-\frac{v_0^2}{2} = -g_1H + \frac{GM}{R} - \frac{GM}{R + H}.$$

Numerical illustration. Use $v_0 = 536.448, g_1 = 5.3452174$ to mimic the constant field example of initial velocity 1200 miles per hour and effective retrorocket thrust 30000 miles per hour per hour. A soft landing is possible from height $H = 23.7775$ miles with a descent time of $T = 2.385$ minutes. These results compare well with the constant field model, which had results of $H = 24$ miles and $T = 2.4$ minutes. Some maple details follow.

```maple
M := 7.35*10^22; R := 1.74*10^6; G := 6.6726*10^-11;
v0_CFM := 1200; A_CFM := 30000; # Constant field model values
cf := 1*5280*12*2.54/100/3600; # miles/hour to meters/second
v0 := v0_CFM*cf; g0 := G*M/R^2; g1 := A_CFM*cf/3600+g0;
eq := -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R = 0;
HH := [solve(eq, H)][1]; # HH := 38266 meters
de := diff(x(t), t, t) = -g1 + M*G/(R+HH-x(t))^2;
```
ic:= x(0)=0, D(x)(0)=v0;
with(DEtools):
DEplot(de,x(t),t=0..290,[[ic]]);
p:=dsolve({de,ic},x(t),numeric):
X:=t->evalf(rhs(p(t)[2]));
V:=t-> evalf(rhs(p(t)[3]));
TT1:=fsolve('V(t)'=0,t,100..800): TT:=TT1/60:
TT1.'seconds', TT.'minutes';
X(TT1).'meters', ((X(TT1)*100/2.54)/12/5280).'miles';

Figure 9. A maple plot used to determine the descent time $T = 2.385$ minutes.

Modeling. The field of the earth has been ignored in both models, which is largely justified because the universal gravitation law term for the lander and the earth is essentially zero for lander locations near the moon.

The field for the lander and the moon is not constant, and therefore it can be argued that conditions exist when assuming it is constant will produce invalid and obviously incorrect results.

Are there cases when the answers for the two models differ greatly? Yes, but the height H of retrorocket activation has to be large. This question is re-visited in the exercises.

Control problems. The descent problem for a lunar lander is a control problem in which the controller is the retrorocket plus the duration of time in which it is active. All we have done here is to decide that the descent should be controlled by retrorockets well in advance of 24 miles above the moon’s surface. The methods used here can be applied to gain insight into the bang-bang control problem of turning on the retrorockets for n intervals of time of durations $\Delta t_1, \ldots, \Delta t_n$ to make an almost soft landing.

Primitive numerical methods. The predictions made here using the computer algebra system maple can be replaced by primitive RK4 methods and graphing. No practising scientist or engineer would do only that, however, because they want to be confident of the calculations and the results. The best idea is to use a black box of numerical and graphical methods which have little chance of failure, e.g., a computer algebra system or a numerical laboratory.
Exercises 4.7

Constant Field. Find the retrorocket activation time T and the activation height $x(T)$. Assume the constant gravitational field model. Units are miles/hour and miles/hour per hour.

1. $v_0 = 1210$, $A = 30020$.
2. $v_0 = 1200$, $A = 30100$.
3. $v_0 = 1300$, $A = 32000$.
4. $v_0 = 1350$, $A = 32000$.
5. $v_0 = 1500$, $A = 45000$.
6. $v_0 = 1550$, $A = 45000$.
7. $v_0 = 1600$, $A = 53000$.
8. $v_0 = 1650$, $A = 53000$.
9. $v_0 = 1400$, $A = 40000$.
10. $v_0 = 1450$, $A = 40000$.

Variable Field. Find the retrorocket activation time T and the activation height $x(T)$. Assume the variable gravitational field model and mks units.

11. $v_0 = 540.92, g_1 = 5.277$.
12. $v_0 = 536.45, g_1 = 5.288$.
13. $v_0 = 581.15, g_1 = 5.517$.

14. $v_0 = 603.504, g_1 = 5.5115$.
15. $v_0 = 625.86, g_1 = 5.59$.
16. $v_0 = 603.504, g_1 = 5.59$.
17. $v_0 = 581.15, g_1 = 5.59$.
18. $v_0 = 670.56, g_1 = 6.59$.
19. $v_0 = 670.56, g_1 = 6.83$.
20. $v_0 = 715.26, g_1 = 7.83$.

Distinguishing Models. The constant field model (1) and the variable field model (2) are verified here, by example, to be distinct. Find the retrorocket activation times T_1, T_2 and the activation heights $x_1(T_1)$, $x_2(T_2)$ for the two models 1, 2. Relations $A = g_1 - g_0$ and $g_0 = GM/R^2$ apply to compute g_1 for the variable field model.

21. $v_0 = 1200$ mph, $A = 10000$ mph/h. Answer: 72, 66.91 miles.
22. $v_0 = 1200$ mph, $A = 12000$ mph/h. Answer: 60, 56.9 miles.
23. $v_0 = 1300$ mph, $A = 10000$ mph/h. Answer: 84.5, 77.7 miles.
24. $v_0 = 1300$ mph, $A = 12000$ mph/h. Answer: 70.42, 66.26 miles.
4.8 Comets

Planet Mercury. Its elliptical orbit has major semi-axis \(a = 0.3871 \) AU (astronomical units) and eccentricity \(e = 0.2056 \). The ellipse can be described by the equations

\[
\begin{align*}
 x(t) &= a \cos(E(t)), \\
 y(t) &= a \sqrt{1 - e^2} \sin(E(t)),
\end{align*}
\]

where \(t \) is the mean anomaly \((0 \leq t \leq 2\pi)\) and \(E(t) \) is the eccentric anomaly determined from Kepler’s equation \(E = t + e \sin(E) \).

The path of mercury is an ellipse, yes. Like the earth, the path is essentially circular, due to eccentricity near zero.

Halley’s Comet. The Kepler theory for mercury applies to Halley’s comet, which has a highly elliptical orbit of eccentricity \(e = 0.967 \), major semi-axis \(a = 17.8 \) AU and period about 76 earth-years.

Our project is to determine \(E(t) \) numerically for Halley’s comet and plot an animation of the elliptical path of the comet.

History

Kepler’s laws of planetary motion were published in 1609 and 1618. The laws are named after Johannes Kepler (1571-1630), a German mathematician and astronomer, who formulated the laws after years of calculation based upon excellent observational data of the Danish astronomer Tycho Brahe (1546-1601). The three laws:

I. The orbit of each planet is an ellipse with the sun at one focus.

II. The line joining the sun to a planet sweeps out equal areas in equal time.

III. The square of the planet’s period of revolution is proportional to the cube of the major semi-axis of its elliptical orbit.

These laws apply not only to planets, but to satellites and comets. A proof of Kepler’s first two laws, assuming Newton’s laws and a vector analysis background, can be found in this text, page 563.

The elliptical orbit can be written as

\[
\begin{align*}
 x(M) &= a \cos(E(M)), \\
 y(M) &= b \sin(E(M)),
\end{align*}
\]
where \(a \) and \(b \) are the semi-axis lengths of the ellipse. Function \(E \) is called the **eccentric anomaly** and \(M \) the **mean anomaly** of the planet, by astronomers.

The minor semi-axis of the ellipse is given by

\[
 b = \sqrt{1 - e^2} a,
\]

where \(e \) is the **eccentricity** of the elliptical orbit. The mean anomaly satisfies \(M = 2\pi t/T \), where \(t=\text{time} \) and \(T \) is the period of the planet.

It is known that the first two laws of Kepler imply **Kepler’s equation**

\[
 E = M + e \sin(E).
\]

Kepler’s Initial Value Problem

The equation \(E = M + e \sin E \), called Kepler’s equation, is the unique implicit solution of the separable differential equation

\[
\begin{align*}
 \frac{dE}{dM} & = \frac{1}{1 - e \cos(E)}, \\
 E(0) & = 0.
\end{align*}
\]

The initial value problem (1) **defines** the eccentric anomaly \(E(M) \). We are able to compute values of \(E \) by suitable first order numerical methods, especially RK4.

The reader should pause and compute \(dE/dM \) by implicit differentiation of Kepler’s equation. The idea works on many implicit equations: find an initial value problem by implicit differentiation, which replaces the implicit equation.

Eccentric Anomaly and Elliptical Orbit

The solution for comet Halley uses **maple** in a direct manner, basing the solution on Kepler’s equation. Details:

```maple
# Kepler's equation E = M + e sin(E)
e:=0.967:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);
Ex:=cos(EE(M)):Ey:=sqrt(1-e^2)*sin(EE(M)):
plot(EE(M),M=0..2*Pi);
plot([Ex,Ey,M=0..2*Pi]);
```
Comet Halley’s Positions each Year

The elliptic trace plot can be modified to display a circle for each comet position from year 0 to year 75. Implemented here is an approach to evaluation of the eccentric anomaly $E(M)$ by numerical differential equation methods. This method is orders of magnitude faster than the RootOf method of the previous illustration.

The lack of circles near the focus on the right is explained by the increased speed of the comet near the sun, which is at this focus.

```plaintext
# Comet positions each year
e:=0.967: de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;
desolved:=dsolve({de,ic},numeric,output=listprocedure);
EE := eval(y(x),desolved):
Ex:=unapply(cos(EE(x)),x):
Ey:=unapply(sqrt(1-e^2)*sin(EE(x)),x):
snapshots:=seq([Ex(2*n*Pi/76),Ey(2*n*Pi/76)],n=0..76):
opts:=scaling=constrained,axes=boxed,style=point,
symbolsize=12,symbol=circle,thickness=2:
plot([[snapshots],[opts]]);
```
4.8 Comets

Halley’s Comet Animation

The computer algebra system **maple** will be used to produce a simple animation of Halley's comet as it traverses its 76-year orbit around the sun. The idea is to solve Kepler's initial value problem in order to find the value of the eccentric anomaly $E(M)$, then divide the orbit into 76 frames and display each in succession to obtain the animation. The obvious method of defining E by Kepler’s equation $E = M + e \sin E$ is too slow for most machines, hence the differential equations method is used.

While each comet position in Figure 13 represents an equal block of time, about one earth-year, the amount of path traveled varies. This is because the speed along the path is not constant, the comet traveling fastest near the sun. The most detail is shown for an animation at 2 frames per second. The orbit graph uses one unit equal to about 17.8 astronomical units, to simplify the display.

```maple
# Simple Halley's comet animation
e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))): ic:=y(0)=0;
desolved:=dsolve({de,ic},numeric,output=listprocedure);
EE := eval(y(x),desolved):
xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):
opts:=view=[-1..1,-0.28..0.28],frames=76,
            scaling=constrained,axes=boxed,style=point,
            symbolsize=12,symbol=circle,thickness=2:
plots[animatecurve]([xt,yt,M=0..2*Pi],opts);
```

Improved Animation. To display the ellipse constantly and animate the comet along the ellipse requires more plot steps. The method is illustrated in this block of **maple** code. The comet position for $t = 2.4516$ earth-years ($M \approx 2\pi t/76$) is shown in Figure 14.
Improved animation of Halley’s comet

e := 0.967; de := diff(y(x),x) = 1/(1 - e*cos(y(x))); ic := y(0) = 0;
desolved := dsolve({de, ic}, numeric, output=listprocedure);
EE := eval(y(x), desolved):
comet := unapply([cos(EE(M)), sqrt(1-e^2)*sin(EE(M))], M):

options1 := view = [-1..1, -0.28..0.28]:
options2 := scaling = constrained, axes = none, thickness = 2:
options3 := style = point, symbolsize = 24, symbol = circle:

opts1 := options1, options2, color = blue:
 opts := options1, options2, options3:
COMET := [[comet(2*Pi*t/(76))], opts]:
ellipse := plot([cos(x), sqrt(1-e^2)*sin(x), x = 0..2*Pi], opts1):

with(plots):
F := animate(plot, COMET, t = 0..4, frames = 32, background = ellipse):
G := animate(plot, COMET, t = 5..75, frames = 71, background = ellipse):
H := animate(plot, COMET, t = 75..76, frames = 16, background = ellipse):
display([F, G, H], insequence = true);

Figure 13. A simple Halley’s comet animation.

Figure 14. Improved Halley’s comet animation. The frame shown is for mean anomaly $M = 2.4516$.
Exercises 4.8

Eccentric Anomaly for the Planets. Make a plot of the eccentric anomaly $E(M)$ on $0 \leq M \leq 2\pi$.

1. Mercury, $e = 0.2056$
2. Venus, $e = 0.0068$
3. Earth, $e = 0.0167$
4. Mars, $e = 0.0934$
5. Jupiter, $e = 0.0483$
6. Saturn, $e = 0.0560$
7. Uranus, $e = 0.0461$
8. Neptune, $e = 0.0097$

Elliptic Path of the Planets. Make a plot of the elliptic path of each planet, using constrained scaling with the given major semi-axis A (in astronomical units AU).

9. Mercury, $e = 0.2056$, $A = 0.39$
10. Venus, $e = 0.0068$, $A = 0.72$
11. Earth, $e = 0.0167$, $A = 1$
12. Mars, $e = 0.0934$, $A = 1.52$
13. Jupiter, $e = 0.0483$, $A = 5.20$
14. Saturn, $e = 0.0560$, $A = 9.54$
15. Uranus, $e = 0.0461$, $A = 19.18$
16. Neptune $e = 0.0097$, $A = 30.06$

Planet Positions. Make a plot with at least 8 planet positions displayed. Use constrained scaling with major semi-axis 1 in the plot. Display the given major semi-axis A and period T in the legend.

17. Mercury, $e = 0.2056$, $A = 0.39$ AU, $T = 0.24$ earth-years
18. Venus, $e = 0.0068$, $A = 0.72$ AU, $T = 0.62$ earth-years
19. Earth, $e = 0.0167$, $A = 1$ AU, $T = 1$ earth-years
20. Mars, $e = 0.0934$, $A = 1.52$ AU, $T = 1.88$ earth-years
21. Jupiter, $e = 0.0483$, $A = 5.20$ AU, $T = 11.86$ earth-years
22. Saturn, $e = 0.0560$, $A = 9.54$ AU, $T = 29.46$ earth-years
23. Uranus, $e = 0.0461$, $A = 19.18$ AU, $T = 84.01$ earth-years
24. Neptune $e = 0.0097$, $A = 30.06$ AU, $T = 164.8$ earth-years

Comet Positions. Make a plot with at least 8 comet positions displayed. Use constrained scaling with major semi-axis 1 in the plot. Display the given eccentricity e and period T in the legend.

26. Comet Wirtanen was the original target of the Rosetta space mission. This comet was discovered in 1948. The comet orbits the sun once every 5.46 earth-years. Eccentricity $e = 0.652$.
27. Comet Wild 2 was discovered in 1978. The comet orbits the sun once every 6.39 earth-years. Eccentricity $e = 0.540$.
28. Comet Biela was discovered in 1772. It orbits the sun every 6.62 earth-years. Eccentricity $e = 0.756$.
29. Comet Encke was discovered in 1786. It orbits the sun each 3.31 earth-years. Eccentricity $e = 0.846$.
30. Comet Giacobini-Zinner, discovered in 1900, orbits the sun each 6.59 earth-years. Eccentricity $e = 0.708$.

31. Comet Schwassmann-Wachmann, discovered in 1930, orbits the sun every 5.36 earth-years. Eccentricity $e = 0.694$.

32. Comet Swift-Tuttle was discovered in 1862. It orbits the sun each 120 earth-years. Eccentricity $e = 0.960$.

Comet Animations. Make an animation plot of comet positions. Use constrained scaling with major-semiaxis 1 in the plot. Display the given period T and eccentricity e in the legend.

33. Comet Churyumov-Gerasimenko
$T = 6.57$, $e = 0.632$.

34. Comet Wirtanen
$T = 5.46$, $e = 0.652$.

35. Comet Wild 2
$T = 6.39$, $e = 0.540$.

36. Comet Biela
$T = 6.62$, $e = 0.756$.

37. Comet Encke
$T = 3.31$, $e = 0.846$.

38. Comet Giacobini-Zinner
$T = 6.59$, $e = 0.708$.

39. Comet Schwassmann-Wachmann
$T = 5.36$, $e = 0.694$.

40. Comet Swift-Tuttle
$T = 120$, $e = 0.960$.