Chapter 3

Linear Algebraic Equations

Contents

3.1 Linear Systems of Equations 163
3.2 Frame Sequences 172
3.3 General Solution Theory 181
3.4 Basis, Nullity and Rank 194
3.5 Answer Check, Proofs and Details 203

This introduction to linear algebraic equations requires only a college algebra background. Vector and matrix notation is not used. The subject of linear algebra, using vectors, matrices and related tools, appears later in the text; see Chapter 5.

The topics studied are linear equations, general solution, reduced echelon system, basis, nullity, rank and nullspace. Introduced here are the three possibilities, the frame sequence, which uses the three rules swap, combination and multiply, and finally the method of elimination, in literature called Gauss-Jordan elimination or Gaussian elimination.

3.1 Linear Systems of Equations

Background from college algebra includes systems of linear algebraic equations like

\[
\begin{align*}
3x + 2y &= 1, \\
x - y &= 2.
\end{align*}
\]

A solution \((x, y)\) of non-homogeneous system (1) is a pair of values that simultaneously satisfy both equations. This example has unique solution \(x = 1, y = -1\).
The homogeneous system corresponding to (1) is obtained by replacing the right sides of the equations by zero:

\[
\begin{aligned}
3x + 2y &= 0, \\
x - y &= 0.
\end{aligned}
\]

System (2) has unique solution \(x = 0, \ y = 0. \) College algebra courses have emphasis on unique solutions. In this chapter we study in depth the cases for no solution and infinitely many solutions. These two cases are illustrated by the examples

No Solution

\[
\begin{aligned}
x - y &= 0, \\
0 &= 1.
\end{aligned}
\]

Infinitely Many Solutions

\[
\begin{aligned}
x - y &= 0, \\
0 &= 0.
\end{aligned}
\]

Equations (3) cannot have a solution because of the signal equation 0 = 1, a false equation. Equations (4) have one solution \((x, y)\) for each point on the 45° line \(x - y = 0\), therefore system (4) has infinitely many solutions.

The Three Possibilities

Solutions of general linear systems with \(m \) equations in \(n \) unknowns may be classified into exactly three possibilities:

1. No solution.
2. Infinitely many solutions.
3. A unique solution.

General Linear Systems

Given numbers \(a_{11}, \ldots, a_{mn}, b_1, \ldots, b_m \), a nonhomogeneous system of \(m \) linear equations in \(n \) unknowns \(x_1, x_2, \ldots, x_n \) is the system

\[
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
& \quad \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m.
\end{aligned}
\]

Constants \(a_{11}, \ldots, a_{mn} \) are called the coefficients of system (5). Constants \(b_1, \ldots, b_m \) are collectively referenced as the right hand side,
right side or RHS. The homogeneous system corresponding to system (5) is obtained by replacing the right side by zero:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= 0, \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= 0, \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= 0.
\end{align*}
\]

An assignment of possible values \(x_1, \ldots, x_n\) which simultaneously satisfy all equations in (5) is called a solution of system (5). Solving system (5) refers to the process of finding all possible solutions of (5). The system (5) is called consistent if it has a solution and otherwise it is called inconsistent.

The Toolkit of Three Rules

Two systems (5) are said to be equivalent provided they have exactly the same solutions. For the purpose of solving systems, there is a toolkit of three reversible operations on equations which can be applied to obtain equivalent systems. These rules neither create nor destroy solutions of the original system:

<table>
<thead>
<tr>
<th>Table 1. The Three Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swap</td>
</tr>
<tr>
<td>Multiply</td>
</tr>
<tr>
<td>Combination</td>
</tr>
</tbody>
</table>

The last two rules replace an existing equation by a new one. A swap repeated reverses the swap operation. A multiply is reversed by multiplication by \(1/m\), whereas the combination rule is reversed by subtracting the equation–multiple previously added. In short, the three operations are reversible.

Theorem 1 (Equivalent Systems)

A second system of linear equations, obtained from the first system of linear equations by a finite number of toolkit operations, has exactly the same solutions as the first system.

Exposition. Writing a set of equations and its equivalent system under toolkit rules demands that all equations be copied, not just the affected
equation(s). Generally, each displayed system changes just one equation, the single exception being a swap of two equations. Within an equation, variables appear left-to-right in variable list order. Equations that contain no variables, typically $0 = 0$, are displayed last.

Documenting the three rules. In blackboard and hand-written work, the acronyms swap, mult and combo, replace the longer terms swap, multiply and combination. They are placed next to the first changed equation. In cases where precision is required, additional information is supplied, namely the source and target equation numbers s, t and the multiplier $m \neq 0$ or c. Details:

Table 2. Documenting toolkit operations with swap, mult, combo.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>swap(s,t)</td>
<td>Swap equations s and t.</td>
</tr>
<tr>
<td>mult(t,m)</td>
<td>Multiply target equation t by multiplier $m \neq 0$.</td>
</tr>
<tr>
<td>combo(s,t,c)</td>
<td>Multiply source equation s by multiplier c and add to target equation t.</td>
</tr>
</tbody>
</table>

The acronyms in Table 2 match usage in the computer algebra system maple, for package linalg and functions swaprow, mulrow and addrow.

Inverses of the Three Rules. Each toolkit operation swap, mult, combo has an inverse, which is documented in the following table. The facts can be used to back up several steps, unearthing a previous step to which a sequence of toolkit operations were performed.

Table 3. Inverses of toolkit operations swap, mult, combo.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>swap(s,t)</td>
<td>swap(s,t)</td>
</tr>
<tr>
<td>mult(t,m)</td>
<td>mult(t,1/m)</td>
</tr>
<tr>
<td>combo(s,t,c)</td>
<td>combo(s,t,−c)</td>
</tr>
</tbody>
</table>

To illustrate, suppose swap(1,3), combo(1,2,−3), mult(2,4) are used to obtain the current linear equations. Then the linear system three steps back can be obtained from the current system by applying the inverse steps in reverse order: mult(2,1/4), combo(1,2,3), swap(1,3).

Solving Equations with Geometry

In the plane $(n = 2)$ and in 3-space $(n = 3)$, equations (5) have a geometric interpretation that can provide valuable intuition about possible solutions. College algebra courses might have omitted the case of no solutions or infinitely many solutions, discussing only the case of a single unique solution. In contrast, all cases are considered here.
3.1 Linear Systems of Equations

Plane Geometry. A straight line may be represented as an equation $Ax + By = C$. Solving the system

\begin{align*}
 a_{11}x + a_{12}y &= b_1 \\
 a_{21}x + a_{22}y &= b_2
\end{align*}

(7)

is the geometrical equivalent of finding all possible (x, y)-intersections of the lines represented in system (7). The distinct geometrical possibilities appear in Figures 1–3.

\begin{figure}
 \centering
 \includegraphics[width=0.5\textwidth]{parallel_lines}
 \caption{Parallel lines, no solution.}
 \end{figure}

\begin{align*}
 -x + y &= 1, \\
 -x + y &= 0.
\end{align*}

\begin{figure}
 \centering
 \includegraphics[width=0.5\textwidth]{identical_lines}
 \caption{Identical lines, infinitely many solutions.}
 \end{figure}

\begin{align*}
 -x + y &= 1, \\
 -2x + 2y &= 2.
\end{align*}

\begin{figure}
 \centering
 \includegraphics[width=0.5\textwidth]{non_parallel_lines}
 \caption{Non-parallel distinct lines, one solution at the unique intersection point P.}
 \end{figure}

\begin{align*}
 -x + y &= 2, \\
 x + y &= 0.
\end{align*}

Space Geometry. A plane in xyz-space is given by an equation $Ax + By + Cz = D$. The vector $A\vec{i} + B\vec{j} + C\vec{k}$ is normal to the plane. An equivalent equation is $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$, where (x_0, y_0, z_0) is a given point in the plane. Solving system

\begin{align*}
 a_{11}x + a_{12}y + a_{13}z &= b_1 \\
 a_{21}x + a_{22}y + a_{23}z &= b_2 \\
 a_{31}x + a_{32}y + a_{33}z &= b_3
\end{align*}

(8)

is the geometric equivalent of finding all possible (x, y, z)-intersections of the planes represented by system (8). Illustrated in Figures 11–10 are some interesting geometrical possibilities.

\begin{figure}
 \centering
 \includegraphics[width=0.5\textwidth]{triple_decker}
 \caption{Triple-decker. Planes I, II, III are parallel. There is no intersection point.}
 \end{figure}

\begin{align*}
 I : z &= 2, \quad II : z = 1, \quad III : z = 0.
\end{align*}
Figure 5. **Double-decker.** Planes I, II are equal and parallel to plane III. There is no intersection point.

\[I : 2z = 2, \quad II : z = 1, \quad III : z = 0. \]

Figure 6. **Book shelf.** Two planes I, II are distinct and parallel. There is no intersection point.

\[I : z = 2, \quad II : z = 1, \quad III : y = 0. \]

Figure 7. **Pup tent.** Two non-parallel planes I, II meet in a line which never meets plane III. There are no intersection points.

\[I : y+z = 0, \quad II : y-z = 0, \quad III : z = -1. \]

Figure 8. **Single-decker.** Planes I, II, III are equal. There are infinitely many intersection points.

\[I : z = 1, \quad II : 2z = 2, \quad III : 3z = 3. \]

Figure 9. **Open book.** Equal planes I, II meet another plane III in a line \(L \). There are infinitely many intersection points.

\[I : y + z = 0, \quad II : 2y + 2z = 0, \quad III : z = 0. \]

Figure 10. **Saw tooth.** Two non-parallel planes I, II meet in a line \(L \) which lies in a third plane III. There are infinitely many intersection points.

\[I : -y+z = 0, \quad II : y+z = 0, \quad III : z = 0. \]
Two non-parallel planes I, II meet in a line \(L \) not parallel to plane III. There is a unique point \(P \) of intersection of all three planes.

\[
I : y + z = 0, \quad II : z = 0, \quad III : x = 0.
\]

Examples and Methods

1 Example (Toolkit)

Given system

\[
\begin{align*}
x + 4z &= 1 \\
x + y + 4z &= 3 \\
z &= 2
\end{align*}
\]

find the system that results from \(\text{swap}(1,2) \) followed by \(\text{combo}(2,1,-1) \).

Solution: The steps are as follows, with the equivalent system equal to the last display.

\[
\begin{align*}
x + 4z &= 1 & \quad \text{Original system.} \\
x + y + 4z &= 3 & \\
z &= 2 \\
x + y + 4z &= 3 & \quad \text{swap}(1,2) \\
x + 4z &= 1 & \\
z &= 2 \\
y + &= 2 & \quad \text{combo}(2,1,-1) \\
x + 4z &= 1 & \\
z &= 2
\end{align*}
\]

2 Example (Inverse Toolkit)

Let

\[
\begin{align*}
x - 3z &= -1 \\
2y + 6z &= 4 \\
z &= 3
\end{align*}
\]

be the system produced by toolkit operations \(\text{mult}(2,2) \) and \(\text{combo}(2,1,-1) \). Find the original system.

Solution: We begin by writing the given toolkit operation inverses, in reverse order, as \(\text{combo}(2,1,1) \) and \(\text{mult}(2,1/2) \). The operations, in this order, are performed on the given system, to find the original system two steps back, in the last display.

\[
\begin{align*}
x - 3z &= -1 & \quad \text{Given system.} \\
2y + 6z &= 4 & \\
z &= 3 \\
x + 2y + 3z &= 3 & \quad \text{combo}(2,1,1) \\
2y + 6z &= 4 & \quad \text{One step back.} \\
z &= 3 \\
x + 2y + 3z &= 3 & \quad \text{mult}(2,1/2) \\
y + 3z &= 2 & \quad \text{Two steps back.}
\end{align*}
\]
3 Example (Planar System) Classify the system geometrically as one of the three types displayed in Figures 1, 2, 3. Then solve for \(x \) and \(y \).

\[
\begin{align*}
\frac{x}{1} + \frac{2y}{1} &= 1, \\
\frac{3x}{3} + \frac{6y}{3} &= 3.
\end{align*}
\]

(9)

Solution: The second equation, divided by 3, gives the first equation. In short, the two equations are proportional. The lines are geometrically equal lines. The two equations are equivalent to the system

\[
\begin{align*}
\frac{x}{1} + \frac{2y}{1} &= 1, \\
0 &= 0.
\end{align*}
\]

To solve the system means to find all points \((x, y)\) simultaneously common to both lines, which are all points \((x, y)\) on \(x + 2y = 1\).

A parametric representation of this line is possible, obtained by setting \(y = t\) and then solving for \(x = 1 - 2t\), \(-\infty < t < \infty\). We report the solution as a parametric solution, but the first solution is also valid.

\[
\begin{align*}
x &= 1 - 2t, \\
y &= t.
\end{align*}
\]

4 Example (No Solution) Classify the system geometrically as the type displayed in Figure 1. Explain why there is no solution.

\[
\begin{align*}
\frac{x}{1} + \frac{2y}{1} &= 1, \\
\frac{3x}{3} + \frac{6y}{3} &= 6.
\end{align*}
\]

(10)

Solution: The second equation, divided by 3, gives \(x + 2y = 2\), a line parallel to the first line \(x + 2y = 1\). The lines are geometrically parallel lines. The two equations are equivalent to the system

\[
\begin{align*}
x + 2y &= 1, \\
x + 2y &= 2.
\end{align*}
\]

To solve the system means to find all points \((x, y)\) simultaneously common to both lines, which are all points \((x, y)\) on \(x + 2y = 1\) and also on \(x + 2y = 2\). If such a point \((x, y)\) exists, then \(1 = x + 2y = 2\) or \(1 = 2\), a contradictory signal equation. Because \(1 = 2\) is false, then no common point \((x, y)\) exists and we report no solution.

Some readers will want to continue and write equations for \(x\) and \(y\), a solution to the problem. We emphasize that this is not possible, because there is no solution at all.

The presence of a signal equation, which is a false equation used primarily to detect no solution, will appear always in the solution process for a system of equations that has no solution. Generally, this signal equation, if present, will be distilled to the single equation “0 = 1.” For instance, \(0 = 2\) can be distilled to \(0 = 1\) by dividing the first signal equation by 2.
Exercises 3.1

Toolkit. Compute the equivalent system of equations.

1. Given \[
\begin{align*}
x + 2z &= 1 \\
x + y + 2z &= 4 \\
z &= 0
\end{align*}
\]
find the system that results from \(\text{combo}(2,1,-1)\).

2. Given \[
\begin{align*}
x + 2z &= 1 \\
x + y + 2z &= 4 \\
z &= 0
\end{align*}
\]
find the system that results from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\).

3. Given \[
\begin{align*}
x + 3z &= 1 \\
x + y + 3z &= 4 \\
z &= 1
\end{align*}
\]
find the system that results from \(\text{combo}(1,2,-1)\).

4. Given \[
\begin{align*}
x + 3z &= 1 \\
x + y + 3z &= 4 \\
z &= 1
\end{align*}
\]
find the system that results from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\).

5. Given \[
\begin{align*}
y + z &= 2 \\
3y + 3z &= 6 \\
y &= 0
\end{align*}
\]
find the system that results from \(\text{swap}(2,3), \text{combo}(2,1,-1)\).

6. Given \[
\begin{align*}
y + z &= 2 \\
3y + 3z &= 6 \\
y &= 0
\end{align*}
\]
the system that results from \(\text{swap}(1,2)\).

7. If \[
\begin{align*}
y &= -3 \\
x + y + 2z &= 4 \\
z &= 0
\end{align*}
\]
resulted from \(\text{combo}(2,1,-1)\), then find the original system.

8. If \[
\begin{align*}
y &= 3 \\
x + 2z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\), then find the original system.

9. If \[
\begin{align*}
y &= 1 \\
x + 3z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{combo}(1,2,-1)\), then find the original system.

10. If \[
\begin{align*}
y &= 1 \\
x + 3z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\), then find the original system.

11. If \[
\begin{align*}
y &= 0 \\
3y + 3z &= 6 \\
y + z &= 2
\end{align*}
\]
from \(\text{mult}(2,-1), \text{combo}(2,1,-1)\), then find the original system.

12. If \[
\begin{align*}
y &= 0 \\
3y + 3z &= 6 \\
2y + z &= 2
\end{align*}
\]
from \(\text{mult}(2,1/3), \text{combo}(1,2,-1), \text{swap}(2,3), \text{swap}(1,2)\), then find the original system.

Inverse Toolkit. Compute the equivalent system of equations.

7. If \[
\begin{align*}
y &= -3 \\
x + y + 2z &= 4 \\
z &= 0
\end{align*}
\]
resulted from \(\text{combo}(2,1,-1)\), then find the original system.

8. If \[
\begin{align*}
y &= 3 \\
x + 2z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\), then find the original system.

9. If \[
\begin{align*}
y &= 1 \\
x + 3z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{combo}(1,2,-1)\), then find the original system.

10. If \[
\begin{align*}
y &= 1 \\
x + 3z &= 1 \\
z &= 0
\end{align*}
\]
from \(\text{swap}(1,2)\) followed by \(\text{combo}(2,1,-1)\), then find the original system.

11. If \[
\begin{align*}
y &= 0 \\
3y + 3z &= 6 \\
y + z &= 2
\end{align*}
\]
from \(\text{mult}(2,-1), \text{combo}(2,1,-1)\), then find the original system.

12. If \[
\begin{align*}
y &= 0 \\
3y + 3z &= 6 \\
2y + z &= 2
\end{align*}
\]
from \(\text{mult}(2,1/3), \text{combo}(1,2,-1), \text{swap}(2,3), \text{swap}(1,2)\), then find the original system.

Planar System. Solve the \(xy\)-system and interpret the solution geometrically as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13. \[
\begin{align*}
x + y &= 1 \\
y &= 1
\end{align*}
\]

14. \[
\begin{align*}
x + y &= -1 \\
x &= 3
\end{align*}
\]

15. \[
\begin{align*}
x + y &= 1 \\
x + 2y &= 2
\end{align*}
\]
Linear Algebraic Equations

<table>
<thead>
<tr>
<th>16.</th>
<th>(x + y = 1)</th>
<th>26.</th>
<th>(x + y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x + 2y = 3)</td>
<td></td>
<td>(x + y = 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x + y = 1)</td>
</tr>
<tr>
<td>17.</td>
<td>(x + y = 1)</td>
<td>27.</td>
<td>(x + y + z = 3)</td>
</tr>
<tr>
<td></td>
<td>(2x + 2y = 2)</td>
<td></td>
<td>(x + y + z = 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x + y + z = 1)</td>
</tr>
<tr>
<td>18.</td>
<td>(2x + y = 1)</td>
<td>28.</td>
<td>(x + y + 2z = 2)</td>
</tr>
<tr>
<td></td>
<td>(6x + 3y = 3)</td>
<td></td>
<td>(x + y + 2z = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x + y + 2z = 0)</td>
</tr>
<tr>
<td>19.</td>
<td>(x - y = 1)</td>
<td>29.</td>
<td>(x - y + z = 2)</td>
</tr>
<tr>
<td></td>
<td>(-x - y = -1)</td>
<td></td>
<td>(2x - 2y + 2z = 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y = 0)</td>
</tr>
<tr>
<td>20.</td>
<td>(2x - y = 1)</td>
<td>30.</td>
<td>(x + y - 2z = 3)</td>
</tr>
<tr>
<td></td>
<td>(x - 0.5y = 0.5)</td>
<td></td>
<td>(3x + 3y - 6z = 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(z = 1)</td>
</tr>
<tr>
<td>21.</td>
<td>(x + y = 1)</td>
<td>31.</td>
<td>(x - y + z = 2)</td>
</tr>
<tr>
<td></td>
<td>(x + y = 2)</td>
<td></td>
<td>(0 = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0 = 0)</td>
</tr>
<tr>
<td>22.</td>
<td>(x - y = 1)</td>
<td>32.</td>
<td>(x + y - 2z = 3)</td>
</tr>
<tr>
<td></td>
<td>(x - y = 0)</td>
<td></td>
<td>(0 = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1 = 1)</td>
</tr>
</tbody>
</table>

System in Space

For each \(xyz \)-system:

(a) If no solution, then report double decker, triple decker, pup tent or book shelf.

(b) If infinitely many solutions, then report single decker, open book or saw tooth.

(c) If a unique intersection point, then report the values of \(x, y \) and \(z \).

<table>
<thead>
<tr>
<th>23.</th>
<th>(x - y + z = 2)</th>
<th>34.</th>
<th>(x - 2z = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x = 1)</td>
<td></td>
<td>(x + 2z = 0)</td>
</tr>
<tr>
<td></td>
<td>(y = 0)</td>
<td></td>
<td>(z = 2)</td>
</tr>
<tr>
<td>24.</td>
<td>(x + y - 2z = 3)</td>
<td></td>
<td>(y + z = 2)</td>
</tr>
<tr>
<td></td>
<td>(x = 2)</td>
<td></td>
<td>(3y + 3z = 6)</td>
</tr>
<tr>
<td></td>
<td>(z = 1)</td>
<td></td>
<td>(y = 0)</td>
</tr>
<tr>
<td>25.</td>
<td>(x - y = 2)</td>
<td>35.</td>
<td>(x + 2z = 1)</td>
</tr>
<tr>
<td></td>
<td>(x - y = 1)</td>
<td></td>
<td>(4x + 8z = 4)</td>
</tr>
<tr>
<td></td>
<td>(x - y = 0)</td>
<td></td>
<td>(z = 0)</td>
</tr>
</tbody>
</table>

3.2 Frame Sequences

Imagine making a video of a linear algebra expert, who applies swap, multiply and combination rules to a system of equations, in order to find the solution.
At each application of one of the toolkit operations *swap*, *combo* or *mult*,
the system of equations is re-written by the expert. The video captures
each new system in its own video frame. The first frame is the original
system and the last frame gives the solution to the system of equations.
The video is edited to eliminate all arithmetic details, leaving only the
frames which record the results of each computation. The resulting se-
quence of selected video frames documents the major steps. We call the
sequence of individual photos in this edited video a **frame sequence**.

Table 4. A Frame Sequence.

<table>
<thead>
<tr>
<th>Frame 1</th>
<th>Frame 2</th>
<th>Frame 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original System</td>
<td>Apply</td>
<td>Apply</td>
</tr>
<tr>
<td></td>
<td>mult(2, 1/3)</td>
<td>combo(2, 1, 1)</td>
</tr>
</tbody>
</table>
| \[
| x - y = 2, \quad 3y = -3. |
| \] | \[
| x - y = 2, \quad y = -1. |
| \] | \[
| x = 1, \quad y = -1. |
| | | |

Lead Variables

A variable chosen from the variable list \(x, y\) is called a **lead variable**
provided it appears just once in the entire system of equations, and in
addition, its appearance reading left-to-right is first, with coefficient one.
The same definition applies to arbitrary variable lists, like \(x_1, x_2, \ldots, x_n\). Symbol \(x\) is a lead variable in all three frames of the sequence in
Table 4. But symbol \(y\) fails to be a lead variable in frames 1 and 2. In
the final frame, both \(x\) and \(y\) are lead variables.

A **free variable** is a non-lead variable, detectable only from a frame in
which every non-zero equation has a lead variable.

A consistent system in which every variable is a lead variable must have
a unique solution. The system must look like the final frame of the
sequence in Table 4. More precisely, the variables appear in variable list
order to the left of the equal sign, each variable appearing just once, with
numbers to the right of the equal sign.

Unique Solution

To solve a system with a unique solution, we apply the toolkit operations
of swap, multiply and combination (acronyms *swap*, *mult*, *combo*), one
operation per frame, until the last frame displays the unique solution.
Because all variables will be lead variables in the last frame, we seek
to create a new lead variable in each frame. Sometimes, this is not
possible, even if it is the general objective. Exceptions are swap and multiply operations, which are often used to prepare for creation of a lead variable. Listed in Table 5 are the rules and conventions that we use to create frame sequences.

Table 5. Conventions and rules for frame sequence creation.

<table>
<thead>
<tr>
<th>Order of Variables.</th>
<th>Variables in equations appear in variable list order to the left of the equal sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order of Equations.</td>
<td>Equations are listed in variable list order inherited from their lead variables. Equations without lead variables appear next. Equations without variables appear last. Multiple swap operations convert any system to this convention.</td>
</tr>
<tr>
<td>New Lead Variable.</td>
<td>Select a new lead variable as the first variable, in variable list order, which appears among the equations without a lead variable.</td>
</tr>
</tbody>
</table>

An illustration:

Frame 1. Original system.

\[
\begin{align*}
 y + 4z &= 2, \\
 x + y &= 3, \\
 x + 2y + 3z &= 4.
\end{align*}
\]

Frame 2.

\[
\begin{align*}
 x + 2y + 3z &= 4, \\
 x + y &= 3, \\
 y + 4z &= 2.
\end{align*}
\]

\text{swap}(1,3)

Frame 3.

\[
\begin{align*}
 x + 2y + 3z &= 4, \\
 - y - 3z &= -1, \\
 y + 4z &= 2.
\end{align*}
\]

\text{combo}(1,2,-1)

Frame 4.

\[
\begin{align*}
 x + 2y + 3z &= 4, \\
 - y - 3z &= -1, \\
 z &= 1.
\end{align*}
\]

\text{combo}(2,3,1)

Frame 5.

\[
\begin{align*}
 x + 2y + 3z &= 4, \\
 y + 3z &= 1, \\
 z &= 1.
\end{align*}
\]

\text{mult}(2,-1)

Frame 6.

\[
\begin{align*}
 x - 3z &= 2, \\
 y + 3z &= 1, \\
 z &= 1.
\end{align*}
\]

\text{combo}(2,1,-2)
3.2 Frame Sequences

$$\begin{align*}
\text{Frame 7.} & \quad \text{combo}(3,2,-3) \\
x - 3z &= 2, & \quad y &= -2, & \quad z &= 1.
\end{align*}$$

$$\begin{align*}
\text{Frame 8.} & \quad \text{combo}(3,1,3) \\
x &= 5, & \quad y &= -2, & \quad z &= 1.
\end{align*}$$

No Solution

A special case occurs in a frame sequence, when a nonzero equation occurs having no variables. Called a **signal equation**, its occurrence signals **no solution**, because the equation is false. Normally, we halt the frame sequence at the point of first discovery, and then declare no solution. An illustration:

$$\begin{align*}
\text{Frame 1. Original system.} & \\
y + 3z &= 2, & \quad x + y &= 3, & \quad x + 2y + 3z &= 4.
\end{align*}$$

$$\begin{align*}
\text{Frame 2.} & \quad \text{swap}(1,3) \\
x + 2y + 3z &= 4, & \quad x + y &= 3, & \quad y + 3z &= 2.
\end{align*}$$

$$\begin{align*}
\text{Frame 3.} & \quad \text{combo}(1,2,-1) \\
x + 2y + 3z &= 4, & \quad -y - 3z &= -1, & \quad y + 3z &= 2.
\end{align*}$$

$$\begin{align*}
\text{Frame 4.} & \quad \text{Signal Equation 0 = 1.} \\
x + 2y + 3z &= 4, & \quad -y - 3z &= -1, & \quad 0 &= 1.
\end{align*}$$

The signal equation $0 = 1$ is a false equation, therefore the last frame has no solution. Because the toolkit neither creates nor destroys solutions, then the original system in the first frame has **no solution**.

Readers who want to go on and write an answer for the system must be warned that **no such possibility exists**. Values cannot be assigned to any variables in the case of no solution. This can be perplexing, especially in a final frame like

$$\begin{align*}
\text{Frame 4.} & \quad \text{Signal Equation 0 = 1.} \\
x &= 4, & \quad z &= -1, & \quad 0 &= 1.
\end{align*}$$
While it is true that x and z were assigned values, the final signal equation $0 = 1$ is false, meaning any answer is impossible. There is no possibility to write equations for all variables. There is no solution. It is a tragic error to claim $x = 4, z = -1$ is a solution.

Infinitely Many Solutions

A system of equations having infinitely many solutions is solved from a frame sequence construction that parallels the unique solution case. The same quest for lead variables is made, hoping in the final frame to have just the variable list on the left and numbers on the right.

The stopping criterion which identifies the final frame, in either the case of a unique solution or infinitely many solutions, is exactly the same:

Last Frame Test. A frame is the last frame when every nonzero equation has a lead variable. Remaining equations have the form $0 = 0$.

Any variables that are not lead variables, in the final frame, are called free variables, because their values are completely undetermined. Any missing variable must be a free variable.

\[
\begin{align*}
\text{Frame 1. Original system.} \\
&y + 3z = 1, \\
&x + y = 3, \\
&x + 2y + 3z = 4. \\
\end{align*}
\]

\[
\begin{align*}
&x + 2y + 3z = 4, \\
&x + y = 3, \\
&y + 3z = 1. \\
\end{align*}
\]

\[
\begin{align*}
&x + 2y + 3z = 4, \\
&\text{swap}(1,3) \\
&- y - 3z = -1, \\
&y + 3z = 1. \\
\end{align*}
\]

\[
\begin{align*}
&x + 2y + 3z = 4, \\
&\text{combo}(1,2,-1) \\
&\quad 0 = 0. \\
\end{align*}
\]

\[
\begin{align*}
&x + 2y + 3z = 4, \\
&\text{combo}(2,3,1) \\
&y + 3z = 1, \\
&0 = 0. \\
\end{align*}
\]

\[
\begin{align*}
&x - 3z = 2, \\
&\text{comb}(2,1,-2) \\
&y + 3z = 1, \\
&\text{Lead}= x, y, \text{Free}=z. \\
\end{align*}
\]
3.2 Frame Sequences

Last Frame to General Solution

Once the last frame of the frame sequence is obtained, then the general solution can be written by a fixed and easy-to-learn algorithm.

Last Frame Algorithm

This process applies only to the last frame in the case of infinitely many solutions.

1. **Assign invented symbols** t_1, t_2, \ldots to the free variables.
2. **Isolate** each lead variable.
3. **Back-substitute** the free variable invented symbols.

To illustrate, assume the last frame of the frame sequence is

$$
x - 3z = 2,
\begin{align*}
y + 3z &= 1, \\
0 &= 0.
\end{align*}
$$

then the general solution is written as follows.

- **z = $t_1** The free variable z is assigned symbol t_1.
- $x = 2 + 3z,$ $y = 1 - 3z$ The lead variables are x, y. Isolate them left.
- $x = 2 + 3t_1,$ $y = 1 - 3t_1,$ $z = t_1.$ Back-substitute. Solution found.

In the last frame, variables appear left of the equal sign in variable list order. Only invented symbols appear right of the equal sign. The expression is called a **standard general solution**. The meaning:

- **Nothing Skipped** Each solution of the system of equations can be obtained by specializing the invented symbols t_1, t_2, \ldots to particular numbers.
- **It Works** The general solution expression satisfies the system of equations for all possible values of the symbols t_1, t_2, \ldots.

General Solution and the Last Frame Algorithm

An additional illustration will be given for the last frame algorithm. Assume **variable list order** x, y, z, w, u, v for the last frame

$$
x + z + u + v = 1, \\
y - u + v = 2, \\
w + 2u - v = 0.
$$

(11)
Every nonzero equation above has a lead variable. The lead variables in (11) are the boxed symbols x, y, w. The free variables are z, u, v.

Assign invented symbols t_1, t_2, t_3 to the free variables and back-substitute in (11) to obtain a standard general solution

$$
\begin{cases}
 x = 1 - t_1 - t_2 - t_3, \\
 y = 2 + t_2 - t_3, \\
 w = -2t_2 + t_3, \\
 z = t_1, \\
 u = t_2, \\
 v = t_3.
\end{cases}
$$

or

$$
\begin{cases}
 x = 1 - t_1 - t_2 - t_3, \\
 y = 2 + t_2 - t_3, \\
 w = -2t_2 + t_3, \\
 z = t_1, \\
 u = t_2, \\
 v = t_3.
\end{cases}
$$

It is demanded by convention that general solutions be displayed in variable list order. This is why the above display bothers to re-write the equations in the new order on the right.

Exercises 3.2

Lead and free variables. For each system assume variable list x_1, \ldots, x_5.

List the lead and free variables.

1. $$
\begin{align*}
 x_2 + 3x_3 & = 0 \\
 x_4 & = 0 \\
 0 & = 0
\end{align*}
$$

2. $$
\begin{align*}
 x_2 & = 0 \\
 x_3 + 3x_5 & = 0 \\
 x_4 + 2x_5 & = 0
\end{align*}
$$

3. $$
\begin{align*}
 x_2 + 3x_3 & = 0 \\
 x_4 & = 0 \\
 0 & = 0
\end{align*}
$$

4. $$
\begin{align*}
 x_1 + 2x_2 + 3x_3 & = 0 \\
 x_4 & = 0 \\
 0 & = 0
\end{align*}
$$

5. $$
\begin{align*}
 x_1 + 2x_2 + 3x_3 & = 0 \\
 0 & = 0 \\
 0 & = 0 \\
 0 & = 0
\end{align*}
$$

6. $$
\begin{align*}
 x_1 + x_2 & = 0 \\
 x_3 & = 0 \\
 0 & = 0
\end{align*}
$$

7. $$
\begin{align*}
 x_1 + x_2 + 3x_3 + 5x_4 & = 0 \\
 x_5 & = 0 \\
 0 & = 0
\end{align*}
$$

8. $$
\begin{align*}
 x_1 + 2x_2 & + 3x_4 + 4x_5 = 0 \\
 x_3 & + x_4 + x_5 = 0 \\
 0 & = 0
\end{align*}
$$

9. $$
\begin{align*}
 x_3 + 2x_4 & = 0 \\
 x_5 & = 0 \\
 0 & = 0 \\
 0 & = 0
\end{align*}
$$

10. $$
\begin{align*}
 x_4 + x_5 & = 0 \\
 0 & = 0 \\
 0 & = 0 \\
 0 & = 0
\end{align*}
$$

11. $$
\begin{align*}
 x_2 + 5x_4 & = 0 \\
 x_3 + 2x_4 & = 0 \\
 x_5 & = 0 \\
 0 & = 0
\end{align*}
$$

12. $$
\begin{align*}
 x_1 + 3x_3 & = 0 \\
 x_2 + x_4 & = 0 \\
 x_5 & = 0 \\
 0 & = 0
\end{align*}
$$

Elementary Operations. Consider the 3×3 system

$$
\begin{align*}
 x + 2y + 3z & = 2, \\
-2x + 3y + 4z & = 0, \\
-3x + 5y + 7z & = 3.
\end{align*}
$$

Define symbols combo, swap and mult as in the textbook. Write the 3×3 system which results from each of the following operations.
3.2 Frame Sequences

| 13. combo(1,3,-1) | 38. \[
\begin{align*}
{x_1} + {x_2} &= -1 \\
{x_1} + 2x_2 &= -2
\end{align*}
\]

| 14. combo(2,3,-5) | 39. \[
\begin{align*}
x_1 + 3x_2 + 2x_3 &= 1 \\
x_2 + 4x_3 &= 3 \\
4x_3 &= 4
\end{align*}
\]

| 15. combo(3,2,4) | 40. \[
\begin{align*}
x_1 + x_2 + 3x_3 &= 1 \\
x_2 &= 2 \\
3x_3 &= 0
\end{align*}
\]

| 16. combo(2,1,4) | 41. \[
\begin{align*}
x_1 + 3x_2 + 2x_3 &= 1 \\
x_2 &= 3 \\
3x_3 &= 0
\end{align*}
\]

| 17. combo(1,2,-1) | 42. \[
\begin{align*}
x_1 &= 2 \\
x_1 + 2x_2 &= 1 \\
2x_1 + 2x_2 + 3x_3 &= 3
\end{align*}
\]

| 18. combo(1,2,-e²) | 43. \[
\begin{align*}
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 + 3x_3 &= 3 \\
x_1 + 6x_2 + x_3 + 2x_4 &= 2
\end{align*}
\]

| 19. mult(1,5) | 44. \[
\begin{align*}
x_1 &= 3 \\
x_1 - 2x_2 &= 1 \\
x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 + 3x_3 &= 0 \\
x_1 + 2x_2 + 3x_3 + x_4 &= 2
\end{align*}
\]

| 20. mult(1,-3) | 45. \[
\begin{align*}
x_1 &= 3 \\
x_1 - 2x_2 &= 1 \\
x_1 - x_2 &= 1 \\
x_2 &= 1 \\
x_1 + 2x_2 + 3x_3 &= 0 \\
x_1 + 2x_2 + 3x_3 + x_4 &= 2
\end{align*}
\]

| 21. mult(2,5) | 46. \[
\begin{align*}
x_1 &= 3 \\
x_1 - x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{align*}
\]

| 22. mult(2,-2) | 47. \[
\begin{align*}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{align*}
\]

| 23. mult(3,4) | 48. \[
\begin{align*}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{align*}
\]

| 24. mult(3,5) | 49. \[
\begin{align*}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{align*}
\]

| 25. mult(2,-π) | 50. \[
\begin{align*}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{align*}
\]

| 26. mult(2,π) | 51. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 27. mult(1,e²) | 52. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 28. mult(1,-e⁻²) | 53. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 29. swap(1,3) | 54. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 30. swap(1,2) | 55. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 31. swap(2,3) | 56. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 32. swap(2,1) | 57. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 33. swap(3,2) | 58. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

| 34. swap(3,1) | 59. \[
\begin{xarray}{lll}
x_1 &= 3 \\
x_1 + 2x_2 &= 2 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1 \\
x_1 + 2x_2 &= 1
\end{xarray}
\]

Unique Solution
Create a frame sequence for each system, whose final frame displays the unique solution of the system of equations.
50. Linear Algebraic Equations

<table>
<thead>
<tr>
<th>x₁ - x₂</th>
<th>= 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ - 2x₂</td>
<td>= 0</td>
</tr>
<tr>
<td>2x₁ + 2x₂ + x₃</td>
<td>= 1</td>
</tr>
<tr>
<td>3x₁ + 6x₂ + x₃ + 3x₄</td>
<td>= 1</td>
</tr>
<tr>
<td>3x₁ + x₃ + x₅</td>
<td>= 3</td>
</tr>
</tbody>
</table>

Infinite Solutions

A system of linear equations has no solution if it contains a signal equation (e.g., 0 = 1), thereby showing that the system has no solution.

<table>
<thead>
<tr>
<th>x₁ + 3x₂ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + 3x₂ = 1</td>
</tr>
<tr>
<td>x₁ + 2x₂ = 1</td>
</tr>
<tr>
<td>2x₁ + 4x₂ = 2</td>
</tr>
</tbody>
</table>

No Solution

Develop a frame sequence for each system, whose final frame contains a signal equation (e.g., 0 = 1), thereby showing that the system has no solution.

<table>
<thead>
<tr>
<th>x₁ + 3x₂ + 2x₃ = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + 3x₂ + 2x₃ = 1</td>
</tr>
<tr>
<td>x₂ + 4x₃ = 3</td>
</tr>
<tr>
<td>x₂ + 4x₃ = 4</td>
</tr>
<tr>
<td>x₁ + 2x₂ + 3x₃ = 1</td>
</tr>
<tr>
<td>x₁ + 2x₂ + 3x₃ = 1</td>
</tr>
<tr>
<td>x₁ + 2x₂ + 3x₃ = 1</td>
</tr>
<tr>
<td>x₂ + 2x₃ = 3</td>
</tr>
<tr>
<td>x₁ + 5x₃ = 5</td>
</tr>
<tr>
<td>x₁ + 2x₂ = 2</td>
</tr>
<tr>
<td>x₁ + 2x₂ = 2</td>
</tr>
<tr>
<td>x₁ + 2x₂ = 2</td>
</tr>
<tr>
<td>x₁ + 6x₂ + x₃ + 2x₄ = 0</td>
</tr>
<tr>
<td>x₁ + 6x₂ + x₃ + 2x₄ = 0</td>
</tr>
<tr>
<td>x₁ + 6x₂ + x₃ + 2x₄ = 0</td>
</tr>
<tr>
<td>x₁ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 4x₄ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 4x₄ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 4x₄ = 0</td>
</tr>
<tr>
<td>x₁ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
<tr>
<td>x₁ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ - x₂ = 3</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
<tr>
<td>x₁ + 2x₂ + x₃ + 3x₄ + 2x₅ = 0</td>
</tr>
</tbody>
</table>

60. Frame Algorithm

Infinite Many Solutions

Display a frame sequence for each system, whose final frame has this property: each nonzero equation has a lead variable. Then apply the last frame algorithm to write out the standard general solution of the system. Assume in each system variable list x₁ to x₅.

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁ + x₂ + 3x₃ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ + x₂ + 3x₃ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₂ + x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>x₄ = 0</td>
</tr>
<tr>
<td>0 = 0</td>
</tr>
</tbody>
</table>
3.3 General Solution Theory

Consider the nonhomogeneous system

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
 \vdots & \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m.
\end{align*}
\]

(12)

The general solution of system (12) is an expression which represents all possible solutions of the system.

The example above for infinitely many solutions contained an unmotivated algorithm which expressed the general solution in terms of invented symbols \(t_1, t_2, \ldots\), which in mathematical literature are called parameters. We outline here some topics from calculus which form the assumed background for this subject.

Equations for Points, Lines and Planes

Background from analytic geometry appears in Table 6. In this table, \(t_1\) and \(t_2\) are parameters, which means they are allowed to take on any value between \(-\infty\) and \(+\infty\). The algebraic equations describing the geometric objects are called parametric equations.
Table 6. Parametric equations with geometrical significance.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = d_1, y = d_2, z = d_3.$</td>
<td>Point. The equations have no parameters and describe a single point.</td>
</tr>
<tr>
<td>$x = d_1 + a_1 t_1, y = d_2 + a_2 t_1, z = d_3 + a_3 t_1.$</td>
<td>Line. The equations with parameter t_1 describe a straight line through (d_1, d_2, d_3) with tangent vector $a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}.$</td>
</tr>
<tr>
<td>$x = d_1 + a_1 t_1 + b_1 t_2, y = d_2 + a_2 t_1 + b_2 t_2, z = d_3 + a_3 t_1 + b_3 t_2.$</td>
<td>Plane. The equations with parameters t_1, t_2 describe a plane containing $(d_1, d_2, d_3).$ The cross product $(a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k})$ is normal to the plane.</td>
</tr>
</tbody>
</table>

To illustrate, the parametric equations $x = 2 - 6 t_1, y = -1 - t_1, z = 8 t_1$ describe the unique line of intersection of the three planes

$$
\begin{align*}
 x + 2y + z &= 0, \\
 2x - 4y + z &= 8, \\
 3x - 2y + 2z &= 8.
\end{align*}
$$

(13)

Details appear in Example 5.

General Solutions

Definition 1 (Parametric Equations)

Equations of the form

$$
\begin{align*}
 x_1 &= d_1 + c_{11} t_1 + \cdots + c_{1k} t_k, \\
 x_2 &= d_2 + c_{21} t_1 + \cdots + c_{2k} t_k, \\
 &\vdots \\
 x_n &= d_n + c_{n1} t_1 + \cdots + c_{nk} t_k
\end{align*}
$$

(14)

are called **parametric equations** for the variables $x_1, \ldots, x_n.$

The numbers $d_1, \ldots, d_n, c_{11}, \ldots, c_{nk}$ are known constants and the symbols t_1, \ldots, t_k are parameters, which are treated as variables that may assigned any value from $-\infty$ to $\infty.$

Three cases appear often in examples and exercises, illustrated here for variables $x_1, x_2, x_3:$

<table>
<thead>
<tr>
<th>No parameters</th>
<th>One parameter</th>
<th>Two parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = d_1$</td>
<td>$x_1 = d_1 + a_1 t_1$</td>
<td>$x_1 = d_1 + a_1 t_1 + b_1 t_2$</td>
</tr>
<tr>
<td>$x_2 = d_2$</td>
<td>$x_2 = d_2 + a_2 t_1$</td>
<td>$x_2 = d_2 + a_2 t_1 + b_2 t_2$</td>
</tr>
<tr>
<td>$x_3 = d_3$</td>
<td>$x_3 = d_3 + a_3 t_1$</td>
<td>$x_3 = d_3 + a_3 t_1 + b_3 t_2$</td>
</tr>
</tbody>
</table>
3.3 General Solution Theory

Definition 2 (General Solution)
A general solution of a linear algebraic system of equations (12) is a set of parametric equations (14) plus two additional requirements:

15) Equations (14) satisfy (5) for all real values of t_1, \ldots, t_k.
16) Any solution of (12) can be obtained from (14) by specializing values of the parameters $t_1, t_2, \ldots t_k$.

A general solution is sometimes called a parametric solution. Requirement (15) means that the solution works. Requirement (16) means that no solutions were skipped.

Definition 3 (Standard General Solution)
Parametric equations (14) are called standard if they satisfy for distinct subscripts j_1, i_2, \ldots, j_k the equations

\begin{equation}
 x_{j_1} = t_1, \quad x_{j_2} = t_2, \quad \ldots, \quad x_{j_k} = t_k.
\end{equation}

The relations mean that the full set of parameter symbols t_1, t_2, \ldots, t_k were assigned to k distinct variable names selected from x_1, \ldots, x_n.

A standard general solution of system (12) is a special set of parametric equations (14) satisfying (15), (16) and additionally (17). Frame sequences always produce a standard general solution.

Theorem 2 (Standard General Solution)
A standard general solution has the fewest possible parameters and it represents each solution of the linear system by a unique set of parameter values.

The theorem supplies the theoretical basis for the method of frame sequences, which formally appears as an algorithm on page 185. The proof of Theorem 2 is delayed until page 205. It is unusual if this proof is a subject of a class lecture, due to its length; it is recommended reading for the mathematically inclined, after understanding the examples.

Reduced Echelon System

Consider a sequence of toolkit operations and the corresponding frame sequence. The last frame, from which we write the general solution, is called a reduced echelon system.

Definition 4 (Reduced Echelon System)
A linear system in which each nonzero equation has a lead variable is called a reduced echelon system. Implicitly assumed are the following definitions and rules.
• A lead variable is a variable which appears with coefficient one in the very first location, left to right, in exactly one equation.

• A variable, not used as a lead variable, is called a free variable. Variables that do not appear at all are free variables.

• The nonzero equations are listed in variable list order, inherited from their lead variables. Equations without variables are listed last.

• All variables in an equation are required to appear in variable list order. Therefore, within an equation all free variables, if any, are to the right of the lead variable.

Detecting a Reduced Echelon System. A given system can be rapidly inspected, to detect if it can be changed into a reduced echelon system. We assume that within each equation, variables appear in variable list order.

A nonhomogeneous linear system is recognized as a reduced echelon system when the first variable listed in each equation has coefficient one and that symbol appears nowhere else in the system of equations.²

Such a system can be re-written, by swapping equations and enforcing the rules above, so that the resulting system is a reduced echelon system.

Rank and Nullity

A reduced echelon system splits the variable names x_1, \ldots, x_n into the lead variables and the free variables. Because the entire variable list is exhausted by these two sets, then

$$\text{lead variable count} + \text{free variable count} = \text{number of variables}.$$

Definition 5 (Rank and Nullity)

The number of lead variables in a reduced echelon system is called the rank of the system. The number of free variables in a reduced echelon system is called the nullity of the system.

We determine the rank and nullity of a system as follows. First, display a frame sequence which starts with that system and ends in a reduced echelon system. Then the rank and nullity of the system are those determined by the final frame.

²Children are better at such classifications than adults. A favorite puzzle among kids is a drawing which contains disguised figures, like a bird, a fire hydrant and Godzilla. Routinely, they find all the disguised figures.
Theorem 3 (Rank and Nullity)
The following equation holds:

\[
\text{rank} + \text{nullity} = \text{number of variables}.
\]

Computers and Reduced Echelon Form

Computer algebra systems and computer numerical laboratories compute
from a given linear system (5) a new equivalent system of identical size,
which is called the reduced row-echelon form, abbreviated \text{rref}.
If the new system has no signal equation, then it is a consistent linear
system, which is a reduced echelon system. A frame sequence starting
with the original system has this system as its last frame.
If the new system has a signal equation, then it is an inconsistent sys-
tem. There is only one signal equation allowed, it must be \[0 = 1\] and
immediately precede any \[0 = 0\] equations.
Every computer-produced \text{rref} for a consistent system is a reduced
echelon system. For inconsistent systems, the computer-produced \text{rref}
gives a final frame with a signal equation, causing us to halt the
sequence and report no solution.
To use computer assist requires matrix entry of the data, a topic which
is delayed until a later chapter. Popular commercial programs used to
perform the computer assist are \text{maple}, \text{mathematica} and \text{matlab}.

Elimination

The elimination algorithm applies at each algebraic step one of the three
toolkit rules defined in Table 1: \text{swap}, \text{multiply} and \text{combination}.
The objective of each algebraic step is to increase the number of
lead variables. Equivalently, each algebraic step tries to eliminate
one repetition of a variable name, which justifies calling the process
the \text{method of elimination}. The process of elimination stops when a
signal equation (typically \[0 = 1\]) is found. Otherwise, elimination stops
when no more lead variables can be found, and then the last system of
equations is a reduced echelon system. A detailed explanation of the
process has been given above in the discussion of frame sequences.
Reversibility of the algebraic steps means that no solutions are created
nor destroyed throughout the algebraic steps: the original system and
all systems in the intermediate steps have exactly the same solutions.
The final reduced echelon system has either a unique solution or infinitely
many solutions, in both cases we report the \text{general solution}. In the
infinitely many solution case, the \text{last frame algorithm} on page 177 is
used to write out a general solution.
Theorem 4 (Elimination)
Every linear system (5) has either no solution or else it has exactly the same solutions as an equivalent reduced echelon system, obtained by repeated use of toolkit rules swap, multiply and combination (page 165).

An Elimination Algorithm
An equation is said to be **processed** if it has a lead variable. Otherwise, the equation is said to be **unprocessed**.

The acronym **rref** abbreviates the phrase *reduced row echelon form*. This abbreviation appears in matrix literature, so we use it instead of creating an acronym for *reduced echelon form* (the word *row* is missing).

1. If an equation “0 = 0” appears, then move it to the end. If a signal equation “0 = c” appears (c ≠ 0 required), then the system is inconsistent. In this case, the algorithm halts and we report **no solution**.

2. Identify the first symbol x_r, in variable list order x_1, \ldots, x_n, which appears in some unprocessed equation. Apply the multiply rule to insure x_r has leading coefficient one. Apply the combination rule to eliminate variable x_r from all other equations. Then x_r is a lead variable: the number of lead variables has been increased by one.

3. Apply the swap rule repeatedly to move this equation past all processed equations, but before the unprocessed equations. Mark the equation as **processed**, e.g., replace x_r by boxed symbol $\boxed{x_r}$.

4. Repeat steps 1–3, until all equations have been processed once. Then lead variables x_{i_1}, \ldots, x_{i_m} have been defined and the last system is a reduced echelon system.

Uniqueness, Lead Variables and RREF
Elimination performed on a given system by two different persons will result in the same reduced echelon system. The answer is unique, because attention has been paid to the natural order of the variable list x_1, \ldots, x_n. Uniqueness results from critical step 2, also called the **rref step**:

Always select a lead variable as the next possible variable name in the original list order x_1, \ldots, x_n, taken from all possible unprocessed equations.

This step insures that the final system is a **reduced echelon system**. The wording next possible must be used, because once a variable name is used for a lead variable it may not be used again. The next variable following the last–used lead variable, from the list x_1, \ldots, x_n, might not
appear in any unprocessed equation, in which case it is a **free variable**. The next variable name in the original list order is then tried as a lead variable.

Avoiding Fractions

Integer arithmetic should be used, when possible, to speed up hand computation in elimination. To avoid fractions, the \texttt{rref} step \textbf{2} may be modified to read with leading coefficient nonzero. The final division to obtain leading coefficient one is then delayed until last.

Examples and Methods

5 Example (Line of Intersection)
Show that the parametric equations \(x = 2 - 6t, \ y = -1 - t, \ z = 8t \) represent a line through \((2, -1, 0)\) with tangent \(-6\hat{i} - \hat{j}\) which is the line of intersection of the three planes

\[
\begin{align*}
x + 2y + z &= 0, \\
2x - 4y + z &= 8, \\
3x - 2y + 2z &= 8.
\end{align*}
\]

(18)

Solution: Using \(t = 0 \) in the parametric solution shows that \((2, -1, 0)\) is on the line. The tangent to the parametric curve is \(x'(t)\hat{i} + y'(t)\hat{j} + z'(t)\hat{k} \), which computes to \(-6\hat{i} - \hat{j}\). The details for showing the parametric solution satisfies the three equations simultaneously:

\[
\begin{align*}
\text{LHS} &= x + 2y + z \\
&= (2 - 6t) + 2(-1 - t) + 8t \\
&= 0 \quad \text{Substitute parametric solution.}\n\end{align*}
\]

\[
\begin{align*}
\text{LHS} &= 2x - 4y + z \\
&= 2(2 - 6t) - 4(-1 - t) + 8t \\
&= 8 \quad \text{Substitute.}\n\end{align*}
\]

\[
\begin{align*}
\text{LHS} &= 3x - 2y + 2z \\
&= 3(2 - 6t) - 2(-1 - t) + 16t \\
&= 8 \quad \text{Substitute.}\n\end{align*}
\]

6 Example (Geometry of Solutions)
Solve the system and interpret the solution geometrically.

\[
\begin{align*}
x + 2z &= 3, \\
y + z &= 1.
\end{align*}
\]
Solution: We begin by displaying the general solution, which is a line:

\[
\begin{align*}
x &= 3 - 2t_1, \\
y &= 1 - t_1, \\
z &= t_1, \\
-\infty < t_1 < \infty.
\end{align*}
\]

In standard \(xyz\)-coordinates, this line passes through \((3, 1, 0)\) with tangent direction \(-2\hat{i} - \hat{j} + \hat{k}\).

Details. To justify this solution, we observe that the first frame equals the last frame, which is a reduced echelon system in variable list order \(x, y, z\). The standard general solution will be obtained from the last frame algorithm.

Frame 1 equals the last frame, a reduced echelon system. The lead variables are \(x, y\) and the free variable is \(z\).

Assign to \(z\) invented symbol \(t_1\). Solve for lead variables \(x\) and \(y\) in terms of the free variable \(z\).

Back-substitute for free variable \(z\). This is the standard general solution. It is geometrically a line, by Table 6.

7 Example (Symbolic Answer Check) Perform an answer check on

\[
\begin{align*}
x + 2z &= 3, \\
y + z &= 1,
\end{align*}
\]

for the general solution

\[
\begin{align*}
x &= 3 - 2t_1, \\
y &= 1 - t_1, \\
z &= t_1, \\
-\infty < t_1 < \infty.
\end{align*}
\]

Solution: The displayed answer can be checked manually by substituting the symbolic general solution into the equations \(x + 2z = 3, y + z = 1\), as follows:

\[
\begin{align*}
x + 2z &= (3 - 2t_1) + 2(t_1) \\
&= 3, \\
y + z &= (1 - t_1) + (t_1) \\
&= 1.
\end{align*}
\]

Therefore, the two equations are satisfied for all values of the symbol \(t_1\).

Errors and Skipped Solutions. An algebraic error could lead to a claimed solution \(x = 3, y = 1, z = 0\), which also passes the answer check. While it is true that \(x = 3, y = 1, z = 0\) is a solution, it is not the general solution. Infinitely many solutions were skipped in the answer check.

General Solution and Free Variables. The number of lead variables is called the rank. The number of free variables is called the nullity. The
basic relation is rank + nullity = number of variables. Computer algebra systems can compute the rank independently, as a double-check against hand computation. This check is useful for discovering skipped solution errors. The rank is unaffected by the ordering of variables.

8 Example (Elimination) Solve the system.

\[
\begin{align*}
 w + 2x - y + z &= 1, \\
 w + 3x - y + 2z &= 0, \\
 x + z &= -1.
\end{align*}
\]

Solution: The answer using the natural variable list order \(w, x, y, z\) is the standard general solution

\[
\begin{align*}
 w &= 3 + t_1 + t_2, \\
 x &= -1 - t_2, \\
 y &= t_1, \\
 z &= t_2, \\
 -\infty &< t_1, t_2 < \infty.
\end{align*}
\]

Details. Elimination will be applied to obtain a frame sequence whose last frame justifies the reported solution. The details amount to applying the three rules swap, multiply and combination for equivalent equations on page 165 to obtain a last frame which is a reduced echelon system. The standard general solution from the last frame algorithm matches the one reported above.

Let’s mark processed equations with a box enclosing the lead variable (\(w\) is marked \(w\)).

1. Original system. Identify the variable order as \(w, x, y, z\).

2. Choose \(w\) as a lead variable. Eliminate \(w\) from equation 2 by using combo\((1, 2, -1)\).

3. The \(w\)-equation is processed. Let \(x\) be the next lead variable. Eliminate \(x\) from equation 3 using combo\((2, 3, -1)\).
Eliminate x from equation 1 using combo$(2,1,-2)$. Mark the x-equation as processed. Reduced echelon system found.

The four frames make the frame sequence which takes the original system into a reduced echelon system. Basic exposition rules apply:

1. Variables in an equation appear in variable list order.
2. Equations inherit variable list order from the lead variables.

The last frame of the sequence, which must be a reduced echelon system, is used to write out the general solution, using the last frame algorithm.

\[
\begin{align*}
 w &= 3 + y + z \\
 x &= -1 - z \\
 y &= t_1 \\
 z &= t_2 \\
\end{align*}
\]

Solve for the lead variables $[w]$. Assign invented symbols t_1, t_2 to the free variables y, z.

\[
\begin{align*}
 w &= 3 + t_1 + t_2 \\
 x &= -1 - t_2 \\
 y &= t_1 \\
 z &= t_2 \\
\end{align*}
\]

Back-substitute free variables into the lead variable equations to get a standard general solution.

Answer check. The check will be performed according to the outline on page 203. The justification for this forward reference is to illustrate how to check answers without using the invented symbols t_1, t_2, \ldots in the details.

Step 1. The nonhomogeneous trial solution $w = 3, x = -1, y = z = 0$ is obtained by setting $t_1 = t_2 = 0$. It is required to satisfy the nonhomogeneous system

\[
\begin{align*}
 w + 2x - y + z &= 1, \\
 w + 3x - y + 2z &= 0, \\
 x + z &= -1. \\
\end{align*}
\]

Step 2. The partial derivatives $\partial_{t_1}, \partial_{t_2}$ are applied to the parametric solution to obtain two homogeneous trial solutions $w = 1, x = 0, y = 1, z = 0$ and $w = 1, x = -1, y = 0, z = 1$, which are required to satisfy the homogeneous system

\[
\begin{align*}
 w + 2x - y + z &= 0, \\
 w + 3x - y + 2z &= 0, \\
 x + z &= 0. \\
\end{align*}
\]

Each trial solution from **Step 1** and **Step 2** is checked by direct substitution.

Example (No solution) Verify by applying elimination that the system has no solution.

\[
\begin{align*}
 w + 2x - y + z &= 0, \\
 w + 3x - y + 2z &= 0, \\
 x + z &= 1. \\
\end{align*}
\]
3.3 General Solution Theory

Solution: Elimination (page 186) will be applied, using the toolkit rules swap, multiply and combination (page 165).

\[\begin{align*}
 w + 2x - y + z &= 0 \\
 w + 3x - y + 2z &= 0 \\
 x + z &= 1
\end{align*} \]

1 Original system. Select variable order \(w, x, y, z \). Identify lead variable \(w \).

2 Eliminate \(w \) from other equations using \(\text{combo}(1,2,-1) \). Mark the \(w \)-equation processed with \(\text{[w]} \).

3 Identify lead variable \(x \). Then eliminate \(x \) from the third equation using \(\text{combo}(2,3,-1) \).

The appearance of the signal equation “0 = 1” means no solution. The logic: if the original system has a solution, then so does the present equivalent system, hence 0 = 1, a contradiction. Elimination halts, because of the inconsistent system containing the false equation “0 = 1.”

10 Example (Reduced Echelon form) Find an equivalent system in reduced echelon form.

\[\begin{align*}
 x_1 + 2x_2 - x_3 + x_4 &= 1, \\
 x_1 + 3x_2 - x_3 + 2x_4 &= 0, \\
 x_2 + x_4 &= -1
\end{align*} \]

Solution: The answer using the natural variable list order \(x_1, x_2, x_2, x_4 \) is the non-homogeneous system in reduced echelon form (briefly, \text{rref} form)

\[\begin{align*}
 x_1 - x_3 - x_4 &= 3 \\
 x_2 + x_4 &= -1 \\
 0 &= 0
\end{align*} \]

The lead variables are \(x_1, x_2 \) and the free variables are \(x_3, x_4 \). The standard general solution of this system is

\[\begin{align*}
 x_1 &= 3 + t_1 + t_2, \\
 x_2 &= -1 - t_2, \\
 x_3 &= t_1, \\
 x_4 &= t_2, \\
 -\infty &< t_1, t_2 < \infty
\]
The details are the same as Example 8, with \(w = x_1, x = x_2, y = x_3, z = x_4 \). The frame sequence has three frames and the last frame is used to display the general solution.

Answer check in maple. The output from the maple code below duplicates the reduced echelon system reported above and the general solution.

```maple
with(LinearAlgebra):
eqs:=[eq1,eq2,eq3]:var:=[x[1],x[2],x[3],x[4]]:
A:=GenerateMatrix(eqs,var,augmented):
F:=ReducedRowEchelonForm(A):
GenerateEquations(F,var);
F,LinearSolve(F,free=t); # general solution answer check
A,LinearSolve(A,free=t); # general solution answer check
```

Exercises 3.3

Classification. Classify the parametric equations as a point, line or plane, then compute as appropriate the tangent to the line or the normal to the plane.

1. \(x = 0, y = 1, z = -2 \)
2. \(x = 1, y = -1, z = 2 \)
3. \(x = t_1, y = 1 + t_1, z = 0 \)
4. \(x = 0, y = 0, z = 1 + t_1 \)
5. \(x = 1 + t_1, y = 0, z = t_2 \)
6. \(x = t_2 + t_1, y = t_2, z = t_1 \)
7. \(x = 1, y = 1 + t_1, z = 1 + t_2 \)
8. \(x = t_2 + t_1, y = t_1 - t_2, z = 0 \)
9. \(x = t_2, y = 1 + t_1, z = t_1 + t_2 \)
10. \(x = 3t_2 + t_1, y = t_1 - t_2, z = 2t_1 \)

Reduced Echelon System. Solve the \(xyz \)-system and interpret the solution geometrically.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>(y + z = 1)</td>
<td>(x + 2z = 2)</td>
</tr>
<tr>
<td>12.</td>
<td>(x + z = 1)</td>
<td>(y + 2z = 4)</td>
</tr>
</tbody>
</table>

Homogeneous System.** Solve the \(xyz \)-system using elimination with variable list order \(x, y, z \).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>(y + z = 1)</td>
<td>(x + 3z = 2)</td>
</tr>
<tr>
<td>14.</td>
<td>(x + z = 1)</td>
<td>(y + z = 5)</td>
</tr>
<tr>
<td>15.</td>
<td>(x + z = 1)</td>
<td>(2x + 2z = 2)</td>
</tr>
<tr>
<td>16.</td>
<td>(x + y = 1)</td>
<td>(3x + 3y = 3)</td>
</tr>
<tr>
<td>17.</td>
<td>(x + y + z = 1)</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>(x + 2y + 4z = 0)</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>(x + y = 2)</td>
<td>(z = 1)</td>
</tr>
<tr>
<td>20.</td>
<td>(x + 4z = 0)</td>
<td>(y = 1)</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>(y + z = 0)</td>
<td>(2x + 2z = 0)</td>
</tr>
<tr>
<td>22.</td>
<td>(x + z = 0)</td>
<td>(2y + 2z = 0)</td>
</tr>
<tr>
<td>23.</td>
<td>(x + z = 0)</td>
<td>(2z = 0)</td>
</tr>
<tr>
<td>24.</td>
<td>(y + z = 0)</td>
<td>(y + 3z = 0)</td>
</tr>
</tbody>
</table>
3.3 General Solution Theory

25. \[\begin{align*}
 x + 2y + 3z &= 0 \\
 0 &= 0
\end{align*} \]

26. \[\begin{align*}
 x + 2y &= 0 \\
 0 &= 0
\end{align*} \]

27. \[\begin{align*}
 y + z &= 0 \\
 2x + 2z &= 0 \\
 x + z &= 0
\end{align*} \]

28. \[\begin{align*}
 2x + y + z &= 0 \\
 x + 2z &= 0 \\
 x + y - z &= 0
\end{align*} \]

29. \[\begin{align*}
 x + y + z &= 0 \\
 2x + 2z &= 0 \\
 x + z &= 0
\end{align*} \]

30. \[\begin{align*}
 x + y + z &= 0 \\
 2x + 2z &= 0 \\
 3x + y + 3z &= 0
\end{align*} \]

Nonhomogeneous \(3 \times 3\) System.

Solve the \(xyz\)-system using elimination and variable list order \(x, y, z\).

31. \[\begin{align*}
 y &= 1 \\
 2z &= 2
\end{align*} \]

32. \[\begin{align*}
 x &= 1 \\
 2z &= 2
\end{align*} \]

33. \[\begin{align*}
 y + z &= 1 \\
 2x + 2z &= 2 \\
 x + z &= 1
\end{align*} \]

34. \[\begin{align*}
 2x + y + z &= 1 \\
 x + 2z &= 2 \\
 x + y - z &= -1
\end{align*} \]

35. \[\begin{align*}
 x + y + z &= 1 \\
 2x + 2z &= 2 \\
 x + z &= 1
\end{align*} \]

36. \[\begin{align*}
 2x + y + z &= 1 \\
 3x + y + 3z &= 2 \\
 3x + y + 3z &= 3
\end{align*} \]

37. \[\begin{align*}
 2x + y + z &= 3 \\
 2x + 2z &= 2 \\
 4x + y + 3z &= 5
\end{align*} \]

Nonhomogeneous \(3 \times 4\) System.

Solve the \(yzuv\)-system using elimination with variable list order \(y, z, u, v\).

38. \[\begin{align*}
 6x + y + 5z &= 2 \\
 4x + y + 3z &= 2
\end{align*} \]

39. \[\begin{align*}
 6x + 2y + 6z &= 10 \\
 6x + y + 6z &= 11 \\
 4x + y + 4z &= 7
\end{align*} \]

40. \[\begin{align*}
 6x + 2y + 4z &= 6 \\
 6x + y + 5z &= 9 \\
 4x + y + 3z &= 5
\end{align*} \]

41. \[\begin{align*}
 y + z + 4u + 8v &= 10 \\
 2z - u + v &= 10 \\
 2y - u + 5v &= 10
\end{align*} \]

42. \[\begin{align*}
 y + 3z + 2u + 5v &= 5 \\
 2z - 2u + 2v &= 0 \\
 y + 3z + 2u &= 0
\end{align*} \]

43. \[\begin{align*}
 y + z + 4u + 8v &= 1 \\
 2z - 2u + 4v &= 0 \\
 y + 3z + 2u + 6v &= 1
\end{align*} \]

44. \[\begin{align*}
 y + 3z + 2u + 6v &= 1 \\
 2z - 2u + 4v &= 0 \\
 y + 3z + 2u + 8v &= 1
\end{align*} \]

45. \[\begin{align*}
 y + 4z + 2u + 7v &= 1 \\
 2z - 2u + 4v &= 0 \\
 y + 4z + 2u + 8v &= 1
\end{align*} \]

46. \[\begin{align*}
 y + 3z + 2u + 7v &= 1 \\
 2z - 2u + 9v &= 1 \\
 y + 4z + 2u + 9v &= 1
\end{align*} \]

47. \[\begin{align*}
 y + z + 4u + 9v &= 1 \\
 2z - 2u + 9v &= 1 \\
 y + 4z + 2u + 7v &= 1
\end{align*} \]

48. \[\begin{align*}
 y + z + 4u + 9v &= 10 \\
 2z - 2u + 4v &= 4 \\
 y + 4z + 2u + 7v &= 8
\end{align*} \]

49. \[\begin{align*}
 y + z + 4u + 9v &= 2 \\
 2z - 2u + 4v &= 4 \\
 y + 3z + 5u + 13v &= 0
\end{align*} \]

50. \[\begin{align*}
 y + z + 4u + 3v &= 2 \\
 2z - 2u + 4v &= 4 \\
 y + 3z + 5u + 7v &= 0
\end{align*} \]
3.4 Basis, Nullity and Rank

Studied here are the basic concepts of basis, nullity and rank of a system of linear algebraic equations.

Basis

Consider the homogeneous system

\[\begin{align*}
 x + 2y + 3z &= 0, \\
 0 &= 0, \\
 0 &= 0.
\end{align*} \]

It is a reduced echelon system with standard general solution

\[\begin{align*}
 x &= -2t_1 - 3t_2, \\
 y &= t_1, \\
 z &= t_2.
\end{align*} \]

The formal partial derivatives \(\partial_{t_1}, \partial_{t_2} \) of the general solution are solutions of the homogeneous system, because they correspond exactly to setting \(t_1 = 1, t_2 = 0 \) and \(t_1 = 0, t_2 = 1 \), respectively:

\[\begin{align*}
 x &= -2, \quad y = 1, \quad z = 0, \quad (\text{partial on } t_1) \\
 x &= -3, \quad y = 0, \quad z = 1. \quad (\text{partial on } t_2)
\end{align*} \]

The terminology basis abbreviates the \(k \) homogeneous solutions obtained from the standard general solution by taking partial derivatives \(\partial_{t_1}, \ldots, \partial_{t_k} \).

A general solution of the homogeneous system can be re-constructed from a basis, which motivates the terminology. In this sense, a basis is an abbreviation for general solution.

Non-uniqueness of a Basis. A given linear system has a number of different standard general solutions, obtained, for example, by re-ordering the variable list. Therefore, a basis is not unique. Language like the basis is tragically incorrect.

To illustrate non-uniqueness of bases, consider the homogeneous 3 \(\times \) 3 system of equations

\[\begin{align*}
 x + y + z &= 0, \\
 0 &= 0, \\
 0 &= 0.
\end{align*} \]

Equations (19) have two standard general solutions \(x = -t_1 - t_2, y = t_1, z = t_2 \) and \(x = t_3, y = -t_3 - t_4, z = t_4 \), corresponding to two different
orderings of the variable list \(x, y, z \). Then **two different bases** for the system are given by the partial derivative relations

(20) \(\partial t_1, \partial t_2 : \begin{cases} x = -1, & y = 1, & z = 0, \\ x = -1, & y = 0, & z = 1, \end{cases} \)

(21) \(\partial t_3, \partial t_4 : \begin{cases} x = 1, & y = -1, & z = 0, \\ x = 0, & y = -1, & z = 1. \end{cases} \)

In general, there are **infinitely many bases** possible for a given linear system.

Nullspace

The term **nullspace** refers to the set of all solutions of the homogeneous system. The prefix **null** refers to the right side of the homogeneous system, which is zero, or **null**, for each equation. The main reason for introducing the term **nullspace** is to consider simultaneously **all possible** general solutions of the linear system, without regard to their representation in terms of invented symbols or the algorithm used to find the formulas.

The term **nullspace** uses the word **space**, which has meaning taken from the phrases **storage space** and **parking space** — it has no intended geometrical meaning whatsoever.

How to Find the Nullspace. A classical method for describing the nullspace is to form a frame sequence for the homogeneous system which ends with last frame a reduced echelon system. The last frame algorithm applies to write the general solution in terms of invented symbols \(t_1, t_2, \ldots \). The meaning is that assignment of values to the symbols \(t_1, t_2, \ldots \) lists all possible solutions of the system. The general solution formula obtained by this method is one possible set of scalar equations that completely describes all solutions of the homogeneous equation, hence it describes completely the nullspace.

Basis for the Nullspace. A **basis** for the nullspace is found by taking partial derivatives \(\partial t_1, \partial t_2, \ldots \) on the last frame algorithm general solution, giving \(k \) solutions. The general solution is reconstructed from these basis elements by multiplying them by the symbols \(t_1, t_2, \ldots \) and adding. The nullspace is the same regardless of the choice of basis, because it is just the set of solutions of the homogeneous equation.
An Illustration. Consider the system

\[
\begin{align*}
 x + y + 2z &= 0, \\
 0 &= 0, \\
 0 &= 0.
\end{align*}
\]

(22)

The nullspace is the set of all solutions of \(x + y + 2z = 0 \). Geometrically, it is the plane \(x + y + 2z = 0 \) through \(x = y = z = 0 \) with normal vector \(\vec{i} + \vec{j} + 2\vec{k} \). The nullspace is represented by the general solution formula

\[
\begin{align*}
 x &= -t_1 - 2t_2, \\
 y &= t_1, \\
 z &= t_2.
\end{align*}
\]

There are infinitely many representations possible, e.g., replace \(t_1 \) by \(kt_1 \) where \(k \) is any nonzero integer.

The nullspace can be described succinctly as the plane generated by the basis

\[
\begin{align*}
 x &= -1, y = 1, z = 0, \quad x = -2, y = 0, z = 1.
\end{align*}
\]

Calculus courses represent the basis elements as vectors \(\mathbf{a} = -\vec{i} + \vec{j} \), \(\mathbf{b} = -2\vec{i} + \vec{k} \), which are two vectors in the plane \(x + y + 2z = 0 \). Their cross product \(\mathbf{a} \times \mathbf{b} \) is normal to the plane.

Rank, Nullity and Dimension

The **rank** of a system of equations is defined to be the **number of lead variables** in an equivalent reduced echelon system. The **nullity** of a system of equations is the **number of free variables** appearing in an equivalent reduced echelon system.

In practical terms, the lead variables and free variables can be determined from the last frame. Sometimes, an intermediate frame has enough information to predict the form of the last frame, and then the lead and free variables can be predicted early.

The nullity equals the number \(k \) of partial derivatives taken to compute the elements in a basis for the nullspace. For instance, the nullity of system (19) equals 2 because there are two free variables, which were assigned the invented symbols \(t_1, t_2 \).

In literature, nullity is referred to as the **dimension** of the nullspace. The term **dimension** is a synonym for the **number of free variables**, which is exactly the **number of parameters** in a standard general solution for the linear system, or equivalently, the **number of partial derivatives** taken to compute a basis.

The fundamental relations between rank, nullity and dimension are
3.4 Basis, Nullity and Rank

\[
\begin{align*}
\text{rank} & = \text{number of lead variables}, \\
\text{nullity} & = \text{number of free variables}, \\
\text{dimension} & = \text{nullity}, \\
\text{rank} + \text{nullity} & = \text{number of variables}.
\end{align*}
\]

The Three Possibilities, Rank and Nullity

We intend to justify the table below, which summarizes the three possibilities for a linear system, in terms of free variables, rank and nullity.

Table 7. Three possibilities for a linear system.

<table>
<thead>
<tr>
<th>No solution</th>
<th>Signal equation $0 = 1$</th>
<th>One or more free variables</th>
<th>nullity ≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinitely many solutions</td>
<td></td>
<td>Zero free variables</td>
<td>nullity $= 0$</td>
</tr>
<tr>
<td>Unique solution</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No Solution. There is no solution to a system of equations exactly when a signal equation $0 = 1$ occurs during the application of swap, multiply and combination rules. We report the system inconsistent and announce no solution.

Infinitely Many Solutions. The situation of infinitely many solutions occurs when there is at least one free variable to which an invented symbol, say t_1, is assigned. Since this symbol takes the values $-\infty < t_1 < \infty$, there are an infinity of solutions. The condition $\text{rank} < n$ can replace a reference to the number of free variables.

Unique Solution. There is a unique solution to a system of equations exactly when zero free variables are present. This is identical to requiring that the number n of variables equal the number of lead variables, or $\text{rank} = n$.

Existence of Infinitely Many Solutions

Homogeneous systems are always consistent, therefore if the number of variables exceeds the number of equations, then there is always one free variable. This proves the following basic result of linear algebra.

Theorem 5 (Infinitely Many Solutions)
A system of $m \times n$ linear homogeneous equations (6) with fewer equations than unknowns ($m < n$) has at least one free variable, hence an infinite number of solutions. Therefore, such a system always has the zero solution and also a nonzero solution.
Non-homogeneous systems can be similarly analyzed by considering conditions under which there will be at least one free variable.

Theorem 6 (Missing Variable and Infinitely Many Solutions)
A consistent system of \(m \times n \) linear equations with one unknown missing has at least one free variable, hence an infinite number of solutions.

Theorem 7 (Non-zero Nullity and Infinitely Many Solutions)
A consistent system of \(m \times n \) linear equations with nonzero nullity has at least one free variable, hence an infinite number of solutions.

Examples and Methods

11 Example (Three Possibilities with Symbol \(k \)) Determine all values of the symbol \(k \) such that the system below has one of the Three Possibilities (1) No solution, (2) Infinitely many solutions or (3) A unique solution. Display all solutions found.

\[
\begin{align*}
 x + ky &= 2, \\
 (2-k)x + y &= 3.
\end{align*}
\]

Solution: The Three Possibilities are detected by (1) A signal equation “0 = 1,” (2) One or more free variables, (3) Zero free variables.

The solution of this problem involves construction of perhaps three frame sequences, the last frame of each resulting in one of the three possibilities (1), (2), (3).

\[
\begin{array}{|c|c|}
\hline
\text{Frame 1.} & x + ky = 2, \\
\hline
\text{Original system.} & (2-k)x + y = 3. \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Frame 2.} & x + ky = 2, \\
\hline
\text{combo(1,2,k-2)} & [1 + k(k-2)]y = 2(k-2) + 3. \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Frame 3.} & x + ky = 2, \\
\hline
\text{Simplify.} & (k-1)^2y = 2k - 1. \\
\hline
\end{array}
\]

The three expected frame sequences share these initial frames. At this point, we identify the values of \(k \) that split off into the three possibilities.

There will be a signal equation if the second equation of Frame 3 has no variables, but the resulting equation is not “0 = 0.” This happens exactly for \(k = 1 \). The resulting signal equation is “0 = 1.” We conclude that one of the three frame sequences terminates with the no solution case. This frame sequence corresponds to \(k = 1 \).

Otherwise, \(k \neq 1 \). For these values of \(k \), there are zero free variables, which implies a unique solution. A by-product of the analysis is that the infinitely many solutions case never occurs!
The conclusion: The initially expected three frame sequences reduce to two frame sequences. One sequence gives no solution and the other sequence gives a unique solution.

The three answers:

(1) No solution occurs only for \(k = 1 \).

(2) Infinitely many solutions occurs for no value of \(k \).

(3) A unique solution occurs for \(k \neq 1 \).

\[
x = 2 - \frac{k(2k-1)}{(k-1)^2},
\]
\[
y = \frac{(2k-1)}{(k-1)^2}.
\]

12 Example (Symbols and the Three Possibilities) Determine all values of the symbols \(a, b \) such that the system below has (1) No solution, (2) Infinitely many solutions or (3) A unique solution. Display all solutions found.

\[
\begin{align*}
x + ay + bz &= 2, \\
y + z &= 3, \\
by + z &= 3b.
\end{align*}
\]

Solution: The plan is to make three frame sequences, using swap, multiply and combination rules. Each sequence has last frame which is one of the three possibilities, the detection facilitated by (1) A signal equation “0 = 1,” (2) At least one free variable, (3) Zero free variables. The initial three frames of each of the expected frame sequences is constructed as follows.

<table>
<thead>
<tr>
<th>(x + ay + bz = 2)</th>
<th>Frame 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y + z = 3)</td>
<td>Original system.</td>
</tr>
<tr>
<td>(by + z = 3b)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x + ay + bz = 2)</th>
<th>Frame 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y + z = 3)</td>
<td></td>
</tr>
<tr>
<td>(0 + (1-b)z = 0)</td>
<td></td>
</tr>
<tr>
<td>combo(2,3,−b)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x + 0 + (b-a)z = 2-3a)</th>
<th>Frame 3. combo(2,1,−a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y + z = 3)</td>
<td>Triangular form.</td>
</tr>
<tr>
<td>(0 + (1-b)z = 0)</td>
<td>Lead variables determined.</td>
</tr>
</tbody>
</table>

The three frame sequences expected will share these initial frames. Frame 3 shows that there are either 2 lead variables or 3 lead variables, accordingly as the coefficient of \(z \) in the third equation is nonzero or zero. There will never be a signal equation. Consequently, the three expected frame sequences reduce to just two. We complete these two sequences to give the answer:

(1) There are no values of \(a, b \) that result in no solution.
(2) If $1 - b = 0$, then there are two lead variables and hence an infinite number of solutions, given by the general solution

$$
\begin{align*}
\begin{cases}
x = 2 - 3a - (b - a)t_1, \\
y = 3 - t_1, \\
z = t_1.
\end{cases}
\end{align*}
$$

(3) If $1 - b \neq 0$, then there are three lead variables and there is a unique solution, given by

$$
\begin{align*}
\begin{cases}
x = 2 - 3a, \\
y = 3, \\
z = 0.
\end{cases}
\end{align*}
$$

Exercises 3.4

Nullspace. Solve using variable order y, z, u, v. Report the values of the nullity and rank in the equation nullity+rank=4.

1. \[\begin{array}{rrrr}
1 & y + z + 4u + 8v = 0 \\
2 & 2z - u + v = 0 \\
2y & - u + 5v = 0
\end{array} \]

2. \[\begin{array}{rrrr}
1 & y + z + 4u + 8v = 0 \\
2 & 2z - 2u + 2v = 0 \\
y + 3z + 2u + 5v = 0
\end{array} \]

3. \[\begin{array}{rrrr}
1 & y + z + 4u + 8v = 0 \\
2 & 2z - 2u + 4v = 0 \\
y + 3z + 2u + 6v = 0
\end{array} \]

4. \[\begin{array}{rrrr}
1 & y + z + 4u + 8v = 0 \\
2 & 2z - 2u + 4v = 0 \\
y + 3z + 2u + 6v = 0
\end{array} \]

5. \[\begin{array}{rrrr}
1 & y + z + 4u + 8v = 0 \\
2 & 2z - 2u + 4v = 0 \\
y + 3z + 4u + 8v = 0
\end{array} \]

6. \[\begin{array}{rrrr}
1 & y + z + 4u + 9v = 0 \\
2 & 2z - 2u + 4v = 0 \\
y + 3z + 4u + 9v = 0
\end{array} \]

7. \[\begin{array}{rrrr}
1 & y + z + 4u + 9v = 0 \\
3 & 3y + 4z + 2u + 5v = 0
\end{array} \]

8. \[\begin{array}{rrrr}
1 & y + 2z + 4u + 9v = 0 \\
y + 8z + 2u + 7v = 0
\end{array} \]

9. \[\begin{array}{rrrr}
1 & y + z + 4u + 11v = 0 \\
2 & 2z - 2u + 4v = 0 \\
y + 3z + 4u + 11v = 0
\end{array} \]

10. \[\begin{array}{rrrr}
1 & y + z + 5u + 11v = 0 \\
2 & 2z - 2u + 6v = 0
\end{array} \]

Dimension of the nullspace. In the homogeneous systems, assume variable order x, y, z, u, v.

(a) Display an equivalent set of equations in reduced echelon form.

(b) Solve for the general solution and check the answer.

(c) Report the dimension of the nullspace.

11. \[\begin{array}{rrrr}
1 & x + y + z + 4u + 8v = 0 \\
-1 & 2x - 2u + 2v = 0 \\
1 & - z + 6u + 6v = 0
\end{array} \]

12. \[\begin{array}{rrrr}
1 & x + y + z + 4u + 8v = 0 \\
1 & 2x - u + v = 0 \\
2 & - u + 5v = 0
\end{array} \]

13. \[\begin{array}{rrrr}
1 & x + 2z - 2u + 4v = 0 \\
2 & 2x + y + 3z + 2u + 6v = 0
\end{array} \]

14. \[\begin{array}{rrrr}
1 & x + y + 3z + 4u + 8v = 0 \\
2 & 2x + 2z - 2u + 4v = 0 \\
1 & x - y + 3z + 2u + 12v = 0
\end{array} \]

15. \[\begin{array}{rrrr}
1 & y + 3z + 4u + 20v = 0 \\
2 & + 2z - 2u + 10v = 0 \\
1 & - y + 3z + 2u + 30v = 0
\end{array} \]
3.4 Basis, Nullity and Rank

16.

\[
\begin{align*}
3x + ay + z &= b \\
x + 2y + 2z &= c
\end{align*}
\]

17.

\[
\begin{align*}
&y + 4u + 20v = 0 \\
&-2u + 10v = 0 \\
&-y + 2u + 30v = 0
\end{align*}
\]

18.

\[
\begin{align*}
-2u + 10v &= 0 \\
&y + 2u + 30v = 0
\end{align*}
\]

19.

\[
\begin{align*}
\&x + y + z + 4u = 0 \\
&-2z - u = 0 \\
&2y - u + = 0
\end{align*}
\]

20.

\[
\begin{align*}
\&x + 2z - 6u + 4v = 0 \\
2x + 3z + 6u + 6v = 0
\end{align*}
\]

21.

\[
\begin{align*}
\&x + ky = 0 \\
&x + 2ky = 0
\end{align*}
\]

22.

\[
\begin{align*}
\&x + ky = 0 \\
&x + 2ky = 0
\end{align*}
\]

23.

\[
\begin{align*}
\&ax + by = 0 \\
&x + 2by = 0
\end{align*}
\]

24.

\[
\begin{align*}
\&bx + ay = 0 \\
&x + 2y = 0
\end{align*}
\]

25.

\[
\begin{align*}
\&bx + ay = c \\
&x + 2y = b - c
\end{align*}
\]

26.

\[
\begin{align*}
\&bx + ay = 2c \\
&x + 2y = c + a
\end{align*}
\]

27.

\[
\begin{align*}
\&bx + ay + z = 0 \\
&2bx + ay + 2z = 0 \\
&x + 2y + 2z = c
\end{align*}
\]

28.

\[
\begin{align*}
\&bx + ay + z = 0 \\
&3bx + 2ay + 2z = 2c, \\
&x + 2y + 2z = c
\end{align*}
\]

29.

\[
\begin{align*}
\&x + 2y + 2z = c
\end{align*}
\]

Three Possibilities. The following questions can be answered by using the quantitative expression of the three possibilities in terms of lead and free variables, rank and nullity.

31. Does there exist a homogeneous \(3 \times 2\) system with a unique solution? Either give an example or else prove that no such system exists.

32. Does there exist a homogeneous \(2 \times 3\) system with a unique solution? Either give an example or else prove that no such system exists.

33. In a homogeneous \(10 \times 10\) system, two equations are identical. Prove that the system has a nonzero solution.

34. In a homogeneous \(5 \times 5\) system, each equation has a leading variable. Prove that the system has only the zero solution.

35. Suppose given two homogeneous systems \(A\) and \(B\), with \(A\) having a unique solution and \(B\) having infinitely many solutions. Explain why \(B\) cannot be obtained from \(A\) by a sequence of swap, multiply and combination operations on the equations.

36. A \(2 \times 3\) system cannot have a unique solution. Cite a theorem or explain why.

37. If a \(3 \times 3\) homogeneous system contains no variables, then what is the general solution?
38. If a 3×3 non-homogeneous solution has a unique solution, then what is the nullity of the homogeneous system?

39. A 7×7 homogeneous system is missing two variables. What is the maximum rank of the system? Give examples for all possible ranks.

40. Suppose an $n \times n$ system of equations (homogeneous or non-homogeneous) has two solutions. Prove that it has infinitely many solutions.

41. What is the nullity and rank of an $n \times n$ system of homogeneous equations if the system has a unique solution?

42. What is the nullity and rank of an $n \times n$ system of non-homogeneous equations if the system has a unique solution?

43. Prove or disprove (by example): A 4×3 nonhomogeneous system cannot have a unique solution.

44. Prove or disprove (by example): A 4×3 homogeneous system always has infinitely many solutions.
3.5 Answer Check, Proofs and Details

Answer Check Algorithm

A given general solution (14) can be tested for validity manually as in Example 6, page 187. It is possible to devise a symbol-free answer check. The technique checks a general solution (14) by testing constant trial solutions in systems (5) and (6).

Step 1. Set all invented symbols t_1, \ldots, t_k to zero in general solution (14) to obtain the nonhomogeneous trial solution $x_1 = d_1$, $x_2 = d_2, \ldots, x_n = d_n$. Test it by direct substitution into the nonhomogeneous system (5).

Step 2. Apply partial derivatives $\partial t_1, \partial t_2, \ldots, \partial t_k$ to the general solution (14), obtaining k homogeneous trial solutions. Verify that the trial solutions satisfy the homogeneous system (6), by direct substitution.

The trial solutions in step 2 are obtained from the general solution (14) by setting one symbol equal to 1 and the others zero, followed by subtracting the nonhomogeneous trial solution of step 1. The partial derivative idea computes the same set of trial solutions, and it is easier to remember.

Theorem 8 (Answer Check)
The answer check algorithm described in steps 1–2 verifies the general solution (14) for all values of the symbols. Please observe that this answer check cannot test for skipped solutions.

Proof of Theorem 8. To simplify notation and quickly communicate the ideas, a proof will be given for a 2×2 system. A proof for the $m \times n$ case can be constructed by the reader, using the same ideas. Consider the nonhomogeneous and homogeneous systems

\begin{align*}
ax_1 + by_1 &= b_1, \\
ax_2 + by_2 &= 0, \\
cx_1 + dy_1 &= b_2, \\
cx_2 + dy_2 &= 0.
\end{align*}

(23) \hspace{2cm} (24)

Assume (x_1, y_1) is a solution of (23) and (x_2, y_2) is a solution of (24). Add corresponding equations in (23) and (24). Then collecting terms gives

\begin{align*}
a(x_1 + x_2) + b(y_1 + y_2) &= b_1, \\
c(x_1 + x_2) + d(y_1 + y_2) &= b_2.
\end{align*}

(25)

This proves that $(x_1 + x_2, y_1 + y_2)$ is a solution of the nonhomogeneous system. Similarly, a scalar multiple (kx_2, ky_2) of a solution (x_2, y_2) of system (24) is
also a solution of (24) and the sum of two solutions of (24) is again a solution of (24).

Given each solution in step 2 satisfies (24), then multiplying the first solution by \(t_1 \) and the second solution by \(t_2 \) and adding gives a solution \((x_3, y_3)\) of (24). After adding \((x_3, y_3)\) to the solution \((x_1, y_1)\) of step 1, a solution of (23) is obtained, proving that the full parametric solution containing the symbols \(t_1 \), \(t_2 \) is a solution of (23). The proof for the \(2 \times 2\) case is complete.

Failure of Answer Checks

An answer check only tests the given formulas against the equations. If too few parameters are present, then the answer check can be algebraically correct but the general solution check fails, because not all solutions can be obtained by specialization of the parameter values.

For example, \(x = 1 - t_1 \), \(y = t_1 \), \(z = 0 \) is a one-parameter solution for \(x + y + z = 1 \), as verified by an answer check. But the general solution \(x = 1 - t_1 - t_2 \), \(y = t_1 \), \(z = t_2 \) has two parameters \(t_1 \), \(t_2 \). Generally, an answer check decides if the formula supplied works in the equation. It does not decide if the given formula represents all solutions. This trouble, in which an error leads to a smaller value for the nullity of the system, is due largely to human error and not machine error.

Linear algebra workbenches have another kind of flaw: they may compute the nullity for a system incorrectly as an integer larger than the correct nullity. A parametric solution with nullity \(k \) might be obtained, checked to work in the original equations, then cross-checked by computing the nullity \(k \) independently. However, the computed nullity \(k \) could be greater than the actual nullity of the system. Here is a simple example, where \(\epsilon \) is a very small positive number:

\[
\begin{align*}
 x + y & = 0, \\
 \epsilon y & = \epsilon.
\end{align*}
\]

(26)

On a limited precision machine, system (26) has internal machine representation\(^3\)

\[
\begin{align*}
 x + y & = 0, \\
 0 & = 0.
\end{align*}
\]

(27)

Representation (27) occurs because the coefficient \(\epsilon \) is smaller than the smallest positive floating point number of the machine, hence it becomes zero during translation. System (26) has nullity zero and system (27) has nullity one. The parametric solution for system (27) is \(x = -t_1 \), \(y = t_1 \), with basis selected by setting \(t_1 = 1 \). The basis passes the answer check on system (26), because \(\epsilon \) times 1 evaluates to \(\epsilon \). A second check

\(^3\)For example, if the machine allows only 2-digit exponents (\(10^{09}\) is the maximum), then \(\epsilon = 10^{-101} \) translates to zero.
for the nullity of system (27) gives 1, which supports the correctness of the parametric solution, but unfortunately there are not infinitely many solutions: for system (26) the correct answer is the unique solution $x = -1, y = 1$.

Computer algebra systems (CAS) are supposed to avoid this kind of error, because they do not translate input into floating point representations. All input is supposed to remain in symbolic or in string form. In short, they don’t change ϵ to zero. Because of this standard, CAS are safer systems in which to do linear algebra computations, albeit slower in execution.

The trouble reported here is not entirely one of input translation. An innocuous comb(1, 2, -1) can cause an equation like $\epsilon y = \epsilon$ in the middle of a frame sequence. If floating point hardware is being used, and not symbolic computation, then the equation can translate to $0 = 0$, causing a false free variable appearance.

Minimal Parametric Solutions

Proof of Theorem 2: The proof of Theorem 2, page 183, will follow from the lemma and theorem below.

Lemma 1 (Unique Representation) If a set of parametric equations (14) satisfies (15), (16) and (17), then each solution of linear system (5) is given by (14) for exactly one set of parameter values.

Proof: Let a solution of system (5) be given by (14) for two sets of parameters t_1, \ldots, t_k and $\tilde{t}_1, \ldots, \tilde{t}_k$. By (17), $t_j = x_{ij} = \tilde{t}_j$ for $1 \leq j \leq k$, therefore the parameter values are the same.

Definition 6 (Minimal Parametric Solution)

Given system (5) has a parametric solution x_1, \ldots, x_n satisfying (14), (15), (16), then among all such parametric solutions there is one which uses the fewest possible parameters. A parametric solution with fewest parameters is called minimal. Parametric solutions with more parameters are called redundant.

To illustrate, the plane $x + y + z = 1$ has a minimal standard parametric solution $x = 1 - t_1 - t_2$, $y = t_1$, $z = t_2$. A redundant parametric solution of $x + y + z = 1$ is $x = 1 - t_1 - t_2 - 2t_3$, $y = t_1 + t_3$, $z = t_2 + t_3$, using three parameters t_1, t_2, t_3.

Theorem 9 (Minimal Parametric Solutions)

Let linear system (5) have a parametric solution satisfying (14), (15), (16). Then (14) has the fewest possible parameters if and only if each solution of linear system (5) is given by (14) for exactly one set of parameter values.

Proof: Suppose first that a general solution (14) is given with the least number k of parameters, but contrary to the theorem, there are two ways to represent
some solution, with corresponding parameters r_1, \ldots, r_k and also s_1, \ldots, s_k.

Subtract the two sets of parametric equations, thus eliminating the symbols x_1, \ldots, x_n, to obtain:

$$c_{11}(r_1 - s_1) + \cdots + c_{1k}(r_k - s_k) = 0,$$
$$\vdots$$
$$c_{n1}(r_1 - s_1) + \cdots + c_{nk}(r_k - s_k) = 0.$$

Relabel the variables and constants so that $r_1 - s_1 \neq 0$, possible since the two sets of parameters are supposed to be different. Divide the preceding equations by $r_1 - s_1$ and solve for the constants c_{11}, \ldots, c_{n1}. This results in equations

$$c_{11} = c_{12}w_2 + \cdots + c_{1k}w_k,$$
$$\vdots$$
$$c_{n1} = c_{n2}w_2 + \cdots + c_{nk}w_k,$$

where $w_j = -\frac{r_j - s_j}{r_1 - s_1}$, $2 \leq j \leq k$. Insert these relations into (14), effectively eliminating the symbols c_{11}, \ldots, c_{n1}, to obtain

$$x_1 = d_1 + c_{12}(t_2 + w_2t_1) + \cdots + c_{1k}(t_k + w_kt_1),$$
$$x_2 = d_2 + c_{22}(t_2 + w_2t_1) + \cdots + c_{2k}(t_k + w_kt_1),$$
$$\vdots$$
$$x_n = d_n + c_{n2}(t_2 + w_2t_1) + \cdots + c_{nk}(t_k + w_kt_1).$$

Let $t_1 = 0$. The remaining parameters t_2, \ldots, t_k are fewer parameters that describe all solutions of the system, a contradiction to the definition of k. This completes the proof of the first half of the theorem.

To prove the second half of the theorem, assume that a parametric solution (14) is given which represents all possible solutions of the system and in addition each solution is represented by exactly one set of parameter values. It will be established that the number k in (14) is the least possible parameter count.

Suppose not. Then there is a second parametric solution

$$x_1 = e_1 + b_{11}v_1 + \cdots + b_{1\ell}v_{\ell},$$
$$\vdots$$
$$x_n = e_n + b_{n1}v_1 + \cdots + b_{n\ell}v_{\ell},$$

(28)

where $\ell < k$ and v_1, \ldots, v_{ℓ} are the parameters. It is assumed that (28) represents all solutions of the linear system.

We shall prove that the solutions for zero parameters in (14) and (28) can be taken to be the same, that is, another parametric solution is given by

$$x_1 = d_1 + b_{11}s_1 + \cdots + b_{1\ell}s_{\ell},$$
$$\vdots$$
$$x_n = d_n + b_{n1}s_1 + \cdots + b_{n\ell}s_{\ell}.$$

(29)

The idea of the proof is to substitute $x_1 = d_1, \ldots, x_n = d_n$ into (28) for parameters r_1, \ldots, r_n. Then solve for e_1, \ldots, e_n and replace back into (28) to obtain

$$x_1 = d_1 + b_{11}(v_1 - r_1) + \cdots + b_{1\ell}(v_{\ell} - r_{\ell}),$$
$$\vdots$$
$$x_n = d_n + b_{n1}(v_1 - r_1) + \cdots + b_{n\ell}(v_{\ell} - r_{\ell}).$$
Replacing parameters \(s_j = v_j - r_j \) gives (29).

From (14) it is known that \(x_1 = d_1 + c_{11}, \ldots, x_n = d_n + c_{n1} \) is a solution. By (29), there are constants \(r_1, \ldots, r_\ell \) such that (we cancel \(d_1, \ldots, d_n \) from both sides)

\[
\begin{align*}
c_{11} &= b_{11}r_1 + \cdots + b_{1\ell}r_\ell, \\
 & \vdots \\
c_{n1} &= b_{n1}r_1 + \cdots + b_{n\ell}r_\ell.
\end{align*}
\]

If \(r_1 \) through \(r_\ell \) are all zero, then the solution just referenced equals \(d_1, \ldots, d_n \), hence (14) has a solution that can be represented with parameters all zero or with \(t_1 = 1 \) and all other parameters zero, a contradiction. Therefore, some \(r_1 \neq 0 \) and we can assume by renumbering that \(r_1 \neq 0 \). Return now to the last system of equations and divide by \(r_1 \) in order to solve for the constants \(b_{11}, \ldots, b_{n1} \). Substitute the answers back into (29) in order to obtain parametric equations

\[
\begin{align*}
x_1 &= d_1 + c_{11}w_1 + b_{12}w_2 + \cdots + b_{1\ell}w_\ell, \\
 & \vdots \\
x_n &= d_n + c_{n1}w_1 + b_{n2}w_2 + \cdots + b_{n\ell}w_\ell,
\end{align*}
\]

where \(w_1 = s_1, w_j = s_j - r_j/r_1 \). Given \(s_1, \ldots, s_\ell \) are parameters, then so are \(w_1, \ldots, w_\ell \).

This process can be repeated for the solution \(x_1 = d_1 + c_{12}, \ldots, x_n = d_n + c_{n2} \). We assert that for some index \(j, 2 \leq j \leq \ell \), constants \(b_{ij}, \ldots, b_{nj} \) in the previous display can be isolated, and the process of replacing symbols \(b \) by \(c \) continued. If not, then \(w_2 = \cdots = w_\ell = 0 \). Then solution \(x_1, \ldots, x_n \) has two distinct representations in (14), first with \(t_2 = 1 \) and all other \(t_j = 0 \), then with \(t_1 = w_1 \) and all other \(t_j = 0 \). A contradiction results, which proves the assertion. After \(\ell \) repetitions of this replacement process, we find a parametric solution

\[
\begin{align*}
x_1 &= d_1 + c_{11}u_1 + c_{12}u_2 + \cdots + c_{1\ell}u_\ell, \\
 & \vdots \\
x_n &= d_n + c_{n1}u_1 + c_{n2}u_2 + \cdots + c_{n\ell}u_\ell,
\end{align*}
\]

in some set of parameters \(u_1, \ldots, u_\ell \).

However, \(\ell < k \), so at least the solution \(x_1 = d_3 + c_{1k}, \ldots, x_n = d_n + c_{nk} \) remains unused by the process. Insert this solution into the previous display, valid for some parameters \(u_1, \ldots, u_\ell \). The relation says that the solution \(x_1 = d_1, \ldots, x_n = d_n \) in (14) has two distinct sets of parameters, namely \(t_1 = u_1, \ldots, t_\ell = u_\ell, t_k = -1 \), all others zero, and also all parameters zero, a contradiction. This completes the proof of the theorem.

Exercises 3.5

Parametric solutions.

1. Is there a \(2 \times 3 \) homogeneous system with general solution having 2 parameters \(t_1, t_2 \)?

2. Is there a \(3 \times 3 \) homogeneous system with general solution having 3 parameters \(t_1, t_2, t_3 \)?

3. Give an example of a \(4 \times 3 \) homogeneous system with general solution having zero parameters, that is, \(x = y = z = 0 \) is the only solu-
4. Give an example of a 4×3 homogeneous system with general solution having exactly one parameter t_1.

5. Give an example of a 4×3 homogeneous system with general solution having exactly two parameters t_1, t_2.

6. Give an example of a 4×3 homogeneous system with general solution having exactly three parameters t_1, t_2, t_3.

7. Consider an $n \times n$ homogeneous system with parametric solution having parameters t_1 to t_k. What are the possible values of k?

8. Consider an $n \times m$ homogeneous system with parametric solution having parameters t_1 to t_k. What are the possible values of k?

Answer Checks. Assume variable list x, y, z and parameter t_1. (a) Display the answer check details. (b) Find the rank. (c) Report whether the given solution is a general solution.

9. \[
\begin{align*}
&y = 1 \\
&2z = 2 \\
&x = t_1, y = 1, z = 1.
\end{align*}
\]

10. \[
\begin{align*}
&x = 1 \\
&2z = 2 \\
&x = 1, y = t_1, z = 1.
\end{align*}
\]

11. \[
\begin{align*}
&y + z = 1 \\
&2x + 2z = 2 \\
&x + z = 1 \\
&x = 0, y = 0, z = 1.
\end{align*}
\]

12. \[
\begin{align*}
&2x + y + z = 1 \\
&x + 2z = 2 \\
&x + y - z = -1 \\
&x = 2, y = -3, z = 0.
\end{align*}
\]

13. \[
\begin{align*}
x + y + z &= 1 \\
2x + 2z &= 2 \\
x + z &= 1.
\end{align*}
\]

14. \[
\begin{align*}
x + y + z &= 1 \\
2x + 2z &= 2 \\
3x + y + 3z &= 3 \\
x = 1 - t_1, y = 0, z = t_1.
\end{align*}
\]

Failure of Answer Checks. Find the unique solution for $\epsilon > 0$. Discuss how a machine might translate the system to obtain infinitely many solutions.

15. $x + \epsilon y = 1, x - \epsilon y = 1$

16. $x + y = 1, x + (1 + \epsilon)y = 1 + \epsilon$

17. $x + \epsilon y = 10\epsilon, x - \epsilon y = 10\epsilon$

18. $x + y = 1 + \epsilon, x + (1 + \epsilon)y = 1 + 11\epsilon$

Minimal Parametric Solutions. For each given system, determine if the expression is a minimal general solution.

19. \[
\begin{align*}
y + z + 4u + 8v &= 0 \\
2z - u + v &= 0 \\
2y &= -3t_1, z = -t_1, \\
u &= -t_1, v = t_1.
\end{align*}
\]

20. \[
\begin{align*}
y + z + 4u + 8v &= 0 \\
2z - 2u + 2v &= 0 \\
y - z + 6u + 6v &= 0 \\
y &= -5t_1 - 7t_2, z = t_1 - t_2, \\
u &= t_1, v = t_2.
\end{align*}
\]

21. \[
\begin{align*}
y + z + 4u + 8v &= 0 \\
2z - 2u + 4v &= 0 \\
y + 3z + 2u + 6v &= 0 \\
y &= -5t_1 + 5t_2, z = t_1 - t_2, \\
u &= t_1 - t_2, v = 0.
\end{align*}
\]

22. \[
\begin{align*}
y + 3z + 4u + 8v &= 0 \\
2z - 2u + 4v &= 0 \\
y + 3z + 2u + 12v &= 0 \\
y &= 5t_1 + 4t_2, z = -3t_1 - 6t_2, \\
u &= -t_1 - 2t_2, v = t_1 + 2t_2.
\end{align*}
\]

Linear Algebraic Equations