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5.4 Independence, Span and Basis

The technical topics of independence, dependence and span apply to the
study of Euclidean spaces R2, R3, . . . , Rn and also to the continuous
function space C(E), the space of differentiable functions C1(E) and its
generalization Cn(E), and to general abstract vector spaces.

Basis and General Solution

The term basis has been introduced earlier for systems of linear algebraic
equations. To review, a basis is obtained from the vector general solution
of Ax = 0 by computing the partial derivatives ∂t1 , ∂t2 , . . . of x, where t1,
t2, . . . is the list of invented symbols assigned to the free variables, which
were identified in rref(A). The partial derivatives are special solutions
to Ax = 0. Knowing these special solutions is sufficient for writing out
the general solution. In this sense, a basis is an abbreviation or shortcut
notation for the general solution.

Deeper properties have been isolated for the list of special solutions ob-
tained from the partial derivatives ∂t1 , ∂t2 , . . . . The most important
properties are span and independence.

Independence and Span

A list of vectors v1, . . . , vk is said to span a vector space V provided V
is exactly the set of all linear combinations

v = c1v1 + · · ·+ ckvk.

The notion originates with the general solution v of a matrix system
Av = 0, where the invented symbols t1, t2, . . . are the constants c1, . . . ,
ck and the vector partial derivatives ∂t1v, . . . , ∂tkv are the symbols v1,
. . . , vk.

Vectors v1, . . . , vk are said to be independent provided each linear
combination v = c1v1 + · · · + ckvk is represented by a unique set of
constants c1, . . . , ck. See pages 324 and 330 for independence tests.

A basis of a vector space V is defined to be an independent set v1, . . . ,
vk that additionally spans V .

The Spaces Rn

The vector space Rn of n-element fixed column vectors (or row vectors)
is from the view of applications a storage system for organization of nu-
merical data sets that happens to be endowed with an algebraic toolkit.
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The organizational scheme induces a data structure onto the numerical
data set. In particular, whether needed or not, there are pre-defined
operations of addition (+) and scalar multiplication (·) which apply to
fixed vectors. The two operations on fixed vectors satisfy the closure
law and in addition obey the eight algebraic vector space properties. We
view the vector space V = Rn as the data set consisting of data item
packages. The toolkit is the following set of algebraic properties.

Closure The operations ~X + ~Y and k ~X are defined and result in
a new vector which is also in the set V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative
Vector ~0 is defined and ~0 + ~X = ~X zero
Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar
multiply

k( ~X + ~Y ) = k ~X + k~Y distributive I
(k1 + k2) ~X = k1

~X + k2
~X distributive II

k1(k2
~X) = (k1k2) ~X distributive III

1 ~X = ~X identity

The 8 Properties

+

Toolkit

Operations .

Set
Data

Figure 11. A Data
Storage System.
A vector space is a data set of
data item packages plus a
storage system which
organizes the data. A toolkit
is provided consisting of
operations + and · plus 8
algebraic vector space
properties.

Fixed Vectors and the Toolkit. Scalar multiplication is a toolkit
item for fixed vectors because of unit systems, like the fps, cgs and mks
systems. We might originally record a data set in a fixed vector in units
of meters and later find out that it should be in centimeters; multiplying
the elements of a vector by the conversion factor k = 100 scales the
data set to centimeters.

Addition of fixed vectors occurs in a variety of calculations, which in-
cludes averages, difference quotients and calculus operations like integra-
tion.

Plotting and the Toolkit. The data set for a plot problem consists
of the plot points in R2, which are the dots for the connect-the-dots
graphic. Assume the function y(x) to be plotted comes from a differential
equation like y′ = f(x, y), then Euler’s numerical method could be used
for the sequence of dots in the graphic. In this case, the next dot is
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represented as v2 = v1 + E(v1). Symbol v1 is the previous dot and
symbol E(v1) is the Euler increment. We define

v1 =

(
x0

y0

)
, E(v1) = h

(
1

f(x0, y0)

)
,

v2 = v1 + E(v1) =

(
x0 + h

y0 + hf(x0, y0)

)
.

A step size h = 0.05 is commonly used. The Euler increment E(v1) is
given as scalar multiplication by h against an R2-vector which involves
evaluation of f at the previous dot v1.

In summary, the dots for the graphic of y(x) form a data set in the
vector space R2. The dots are obtained by algorithm rules, which are
easily expressed by vector addition (+) and scalar multiplication (·). The
8 properties of the toolkit were used in a limited way.

Digital Photographs. A digital photo consists of many pixels of dif-
ferent colors arranged in a two dimensional array. Structure can be
assigned to the photo by storing the digital data in a matrix A of size
n×m. Each entry of A is an integer which specifies the color properties
of a given pixel.

The set V of all n×m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage
system for photos. However, the algebraic toolkit for V is a convenient
way to express operations on photos. We give one illustration: breaking
a photo into RGB (Red, Green, Blue) separation photos, in order to
make separation transparencies. One easy way to do this is to code each
entry of A as aij = rij + gijx + bijx

2 where is x is some convenient
base. The integers rij , gij , bij represent the amount of red, green and
blue present in the pixel with data aij . Then A = R + Gx + Bx2 where
R = [rij ], G = [gij ], B = [bij ] are n×m matrices that represent the color
separation photos. These monochromatic photos are superimposed as
color transparencies to duplicate the original photograph.

Printing machinery from many years ago employed separation negatives
and multiple printing runs to make book photos. The advent of digital
printers and better, less expensive technologies has made the separation
process nearly obsolete. To help the reader understand the historical
events, we record the following quote from Sam Wang7:

I encountered many difficulties when I first began making gum prints:
it was not clear which paper to use; my exposing light (a sun lamp) was
highly inadequate; plus a myriad of other problems. I was also using

7Sam Wang teaches photography and art with computer at Clemson University
in South Carolina. His photography degree is from the University of Iowa (1966).
Reference: A Gallery of Tri-Color Prints, by Sam Wang
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panchromatic film, making in–camera separations, holding RGB filters
in front of the camera lens for three exposures onto 3 separate pieces of
black and white film. I also made color separation negatives from color
transparencies by enlarging in the darkroom. Both of these methods
were not only tedious but often produced negatives very difficult to
print — densities and contrasts that were hard to control and working
in the dark with panchromatic film was definitely not fun. The fact
that I got a few halfway decent prints is something of a small miracle,
and represents hundreds of hours of frustrating work! Digital negatives
by comparison greatly simplify the process. Nowadays (2004) I use
color images from digital cameras as well as scans from slides, and the
negatives print much more predictably.

Function Spaces

The premier storage systems used for applications involving ordinary or
partial differential equations are function spaces. The data item packages
for differential equations are their solutions, which are functions, or in
an applied context, a graphic defined on a certain graph window. They
are not column vectors of numbers.

Researchers in numerical solutions of differential equations might view a
function as being a fixed vector. Their unique intuitive viewpoint is that
a function is a graph and a graph is determined by so many dots, which
are practically obtained by sampling the function y(x) at a reasonably
dense set of x-values. Their approximation is

y ≈


y(x1)
y(x2)

...
y(xn)


where x1, . . . , xn are the samples and y(x1), . . . , y(xn) are the sampled
values of function y.

The trouble with the approximation is that two different functions may
need different sampling rates to properly represent their graphic. The
result is that the two functions might need data storage systems of dif-
ferent dimensions, e.g., f needs its sample set in R200 and g needs its
sample set in R400. The absence of a universal numerical data storage
system for sampled functions explains the appeal of a storage system like
the set of all functions.

Novices often suggest a way around the lack of a universal numerical
data storage system for sampled functions: develop a theory of column
vectors with infinitely many components. It may help you to think of
any function f as an infinitely long column vector, with one entry f(x)
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for each possible sample x, e.g.,

f =


...

f(x)
...

 level x

It is not clear how to order or address the entries of such a column
vector: at algebraic stages it hinders. Can computers store infinitely
long column vectors? The easiest path through the algebra is to deal
exactly with functions and function notation. Still, there is something
attractive about the change from sampled approximations to a single
column vector with infinite extent:

f ≈


f(x1)
f(x2)

...
f(xn)

→


...
f(x)

...

 level x

The thinking behind the level x annotation is that x stands for one of
the infinite possibilities for an invented sample. Alternatively, with a
rich set of invented samples x1, . . . , xn, value f(x) equals approximately
f(xj), where x is closest to some sample xj .

The vector space V of all functions on a set E. The rules for
function addition and scalar multiplication come from college algebra
and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

These rules can be motivated and remembered by the notation of in-
finitely long column vectors:

c1
~f + c2~g = c1


...

f(x)
...

+ c2


...

g(x)
...

 =


...

c1f(x) + c2g(x)
...


The rules define addition and scalar multiplication of functions. The
closure law for a vector space holds. Routine but long justifications are
required to show that V , under the above rules for addition and scalar
multiplication, has the required 8-property toolkit to make it a vector
space:

Closure The operations f + g and kf are defined and result in a
new function which is also in the set V of all functions on
the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative
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Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in ap-
plied literature as the storage systems for solutions to differential equa-
tions and solutions of related models.

The Space C(E). Let E be an open bounded set, for example E =
{x : 0 < x < 1} on the real line. The set C(E) is the subset of the
set V of all functions on E obtained by restricting the function to be
continuous. Because sums and scalar multiples of continuous functions
are continuous, then C(E) is a subspace of V and a vector space in its
own right.

The Space C1(E). The set C1(E) is the subset of the set C(E)
of all continuous functions on E obtained by restricting the function
to be continuously differentiable. Because sums and scalar multiples of
continuously differentiable functions are continuously differentiable, then
C1(E) is a subspace of C(E) and a vector space in its own right.

The Space Ck(E). The set Ck(E) is the subset of the set C(E) of
all continuous functions on E obtained by restricting the function to be
k times continuously differentiable. Because sums and scalar multiples
of k times continuously differentiable functions are k times continuously
differentiable, then Ck(E) is a subspace of C(E) and a vector space in
its own right.

Solution Space of a Differential Equation. The differential
equation y′′ − y = 0 has general solution y = c1e

x + c2e
−x, which means

that the set S of all solutions of the differential equation consists of
all possible linear combinations of the two functions ex and e−x. The
latter are functions in C2(E) where E can be any interval on the x-axis.
Therefore, S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous differential equation, of any order,
has a solution set S which is a vector space in its own right.

Other Vector Spaces

The number of different vector spaces used as data storage systems in
scientific literature is finite, but growing with new discoveries. There
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is really no limit to the number of different settings possible, because
creative individuals are able to invent new ones.

Here is an example of how creation begets new vector spaces. Consider
the problem y′ = 2y + f(x) and the task of storing data for the plotting
of an initial value problem with initial condition y(x0) = y0. The data
set V suitable for plotting consists of fixed vectors

v =

 x0

y0

f

 .

A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The
fixed vectors are not numerical vectors inR3, but some hybrid of vectors
in R2 and the space of continuous functions C(E) where E is the real
line.

It is relatively easy to come up with definitions of vector addition and
scalar multiplication on V . The closure law holds and the eight vector
space properties can be routinely verified. Therefore, V is an abstract
vector space, unlike any found in this text. We reiterate:

An abstract vector space is a set V and two operations of
+ and · such that the closure law holds and the eight

algebraic vector space properties are satisfied.

The paycheck for having recognized a vector space setting in an applica-
tion is clarity of exposition and economy of effort in details. Algebraic
details in R2 can often be transferred unchanged to an abstract vector
space setting, line for line, to obtain the details in the more complex
setting.

Independence and Dependence

The subject of independence applies to coordinate spaces Rn, function
spaces and general abstract vector spaces. Introduced here are defini-
tions for low dimensions, the geometrical meaning of independence, basic
algebraic tests for independence, and generalizations to abstract vector
spaces.

Definition 3 (Independence)
Vectors v1, . . . , vk are called independent provided each linear combi-
nation v = c1v1 + · · ·+ ckvk is represented by a unique set of constants
c1, . . . , ck.



5.4 Independence, Span and Basis 325

Definition 4 (Dependence)
Vectors v1, . . . , vk are called dependent provided they are not inde-
pendent. This means that a linear combination v = a1v1 + · · · + akvk

can be represented in a second way as v = b1v1 + · · · + bkvk where for
at least one index j, aj 6= bj .

Independence means unique representation of linear combina-
tions of v1, . . . , vk, which is exactly the statement

a1v1 + · · ·+ akvk = b1v1 + · · ·+ bkvk

implies the coefficients match:
a1 = b1

a2 = b2
...

ak = bk

Theorem 13 ((Unique Representation of the Zero Vector))
Vectors v1, . . . , vk are independent in vector space V if and only if the
system of equations

c1v1 + · · ·+ ckvk = 0

has unique solution c1 = · · · = ck = 0.

Proof: The proof will be given for the characteristic case k = 3, because details
for general k can be written from this proof, by minor editing of the text.

Assume vectors v1, v2, v3 are independent and c1v1 + c2v2 + c3v3 = 0. Then
a1v1 + x2v2 + a3v3 = b1v1 + b2v2 + b3v3 where we define a1 = c1, a2 = c2,
a3 = c3 and b1 = b2 = b3 = 0. By independence, the coefficients match. By
the definition of the symbols, this implies the equations c1 = a1 = b1 = 0,
c2 = a2 = b2 = 0, c3 = a3 = b3 = 0. Then c1 = c2 = c3 = 0.

Conversely, assume c1v1 + c2v2 + c3v3 = 0 implies c1 = c2 = c3 = 0. If

a1v1 + a2v2 + a3v3 = b1v1 + b2v2 + b3v3,

then subtract the right side from the left to obtain

(a1 − b1)v1 + (a2 − b2)v2 + (a3 − b3)v3 = 0.

This equation is equivalent to

c1v1 + c2v2 + c3v3 = 0

where the symbols c1, c2, c3 are defined by c1 = a1−b1, c2 = a2−b2, c3 = a3−b3.
The theorem’s condition implies that c1 = c2 = c3 = 0, which in turn implies
a1 = b1, a2 = b2, a3 = b3. The proof is complete.

Theorem 14 (Subsets of Independent Sets)
Any nonvoid subset of an independent set is also independent.

Subsets of dependent sets can be either independent or dependent.
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Proof: The idea will be communicated for a set of three independent vectors
v1, v2, v3. Let the subset to be tested consist of the two vectors v1, v2. We
form the vector equation

c1v1 + c2v2 = 0

and solve for the constants c1,c2. If c1 = c2 = 0 is the only solution, then v1, v2

is a an independent set.

Define c3 = 0. Because c3v3 = 0, the term c3v3 can be added into the previous
vector equation to obtain the new vector equation

c1v1 + c2v2 + c3v3 = 0.

Independence of the three vectors implies c1 = c2 = c3 = 0, which in turn
implies c1 = c2 = 0, completing the proof that v1, v2 are independent.

The proof for an arbitrary independent set v1, . . . , vk is similar. By renumber-
ing, we can assume the subset to be tested for independence is v1, . . . , vm for
some index m ≤ k. The proof amounts to adapting the proof for k = 3 and
m = 2, given above. The details are left to the reader.

Because a single nonzero vector is an independent subset of any list of vectors,
then a subset of a dependent set can be independent. If the subset of the
dependent set is the whole set, then the subset is dependent. In conclusion,
subsets of dependent sets can be either independent or dependent.

Independence Test. To prove that vectors v1, . . . , vk are indepen-
dent, form the system of equations

c1v1 + · · ·+ ckvk = 0.

Solve for the constants c1, . . . , ck.

Independence means all the constants c1, . . . , ck are zero.

Dependence means that a nonzero solution c1, . . . , ck exists.
This means cj 6= 0 for at least one index j.

Geometric Independence and Dependence for Two Vectors.
Two vectors v1, v2 inR2 are said to be independent provided neither is
the zero vector and one is not a scalar multiple of the other. Graphically,
this means v1 and v2 form the edges of a non-degenerate parallelogram.

v2

v1 Figure 12. Independent vectors.
Two nonzero nonparallel vectors v1, v2 form
the edges of a parallelogram. A vector
v = c1v1 + c2v2 lies interior to the
parallelogram if the scaling constants satisfy
0 < c1 < 1, 0 < c2 < 1.

Algebraic Independence for Two Vectors. Given two vectors v1,
v2, construct the system of equations in unknowns c1, c2

c1v1 + c2v2 = 0.



5.4 Independence, Span and Basis 327

Solve the system for c1, c2. The two vectors are independent if and
only if the system has the unique solution c1 = c2 = 0.

The test is equivalent to the statement that v = x1v1 + x2v2 holds for
one unique set of constants x1, x2. The details: if v = a1v1 + a2v2

and also v = b1v1 + b2v2, then subtraction of the two equations gives
(a1 − b1)v1 + (a2 − b2)v2 = 0. This is a relation c1v1 + c2v2 = 0
with c1 = a1 − b1, c2 = a2 − b2. Independence means c1 = c2 = 0, or
equivalently, a1 = b1, a2 = b2, giving that v = x1v1 + x2v2 holds for
exactly one unique set of constants x1, x2.

b

a

a + b

Figure 13. The parallelogram rule.
Two nonzero vectors a, b are added by the
parallelogram rule: a + b has tail matching the
joined tails of a, b and head at the corner of
the completed parallelogram.

Why does the test work? Vector v = c1v1 + c2v2 is formed by the
parallelogram rule, Figure 13, by adding the scaled vectors a = c1v1, b =
c2v2. The zero vector v = 0 can be obtained from nonzero nonparallel
vectors v1, v2 only if the scaling factors c1, c2 are both zero.

Geometric Dependence of two vectors. Define vectors v1, v2 in
R2 to be dependent provided they are not independent. This means
one of v1, v2 is the zero vector or else v1 and v2 lie along the same
line: the two vectors cannot form a parallelogram. Algebraic detection
of dependence is by failure of the independence test: after solving the
system c1v1 + c2v2 = 0, one of the two constants c1, c2 is nonzero.

Independence and Dependence of Two Vectors in an Ab-
stract Space. The algebraic definition used for R2 is invoked to de-
fine independence of two vectors in an abstract vector space. An imme-
diate application is in R3, where all the geometry discussed above still
applies. In other spaces, the geometry vanishes, but algebra remains a
basic tool.

Independence test for two vectors v1, v2. In an abstract
vector space V , form the vector equation

c1v1 + c2v2 = 0.

Solve this equation for c1, c2. Then v1, v2 are independent
in V only if the system has unique solution c1 = c2 = 0.

It is not obvious how to solve for c1, c2 in the algebraic independence
test, when the vectors v1, v2 are not fixed vectors. If V is a set of
functions, then the toolkit from matrices does not directly apply. This
algebraic problem causes us to develop special tools just for functions,
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called the sampling test and Wronskian test. Examples appear later,
which illustrate how to apply these two important independence tests for
functions.

Fixed Vector Illustration. Two column vectors are tested for inde-
pendence by forming the system of equations c1v1 + c2v2 = 0, e.g,

c1

(
−1

1

)
+ c2

(
2
1

)
=

(
0
0

)
.

This vector equation can be written as a homogeneous system Ac = 0,
defined by

A =

(
−1 2

1 1

)
, c =

(
c1

c2

)
.

The system Ac = 0 can be solved for c by rref methods. Because
rref(A) = I, then c1 = c2 = 0, which verifies independence of the two
vectors.

If A is square and rref(A) = I, then A−1 exists. The equation Ac = 0
can be solved by multiplication of both sides by A−1. Then the unique
solution is c = 0, which means c1 = c2 = 0. Inverse theory says
A−1 = adj(A)/ det(A) exists precisely when det(A) 6= 0, therefore in-
dependence is verified independently of rref methods by the 2 × 2 de-
terminant computation det(A) = −3 6= 0.

Remarks about det(A) apply to independence testing for any two vectors,
but only in case the system of equations Ac = 0 is square. For instance,
in R3, the homogeneous system

c1

 −1
1
0

+ c2

 2
1
0

 =

 0
0
0


has vector-matrix form Ac = 0 with 3×2 matrix A. There is no chance
to use determinants. We remark that rref methods apply as before
to verify independence.

Geometric Independence and Dependence for Three Vec-
tors. Three vectors in R3 are said to be independent provided none
of them are the zero vector and they form the edges of a non-degenerate
parallelepiped of positive volume. Such vectors are called a triad. In
the special case of all pairs orthogonal (the vectors are 90◦ apart) they
are called an orthogonal triad.

v2

v1

v3 Figure 14. Independence of three vectors.
Vectors v1, v2, v3 form the edges of a parallelepiped.
A vector v = c1v1 + c2v2 + c3v3 is located interior to
the parallelepiped, provided satisfying
0 < c1, c2, c3 < 1.
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Algebraic Independence Test for Three Vectors. Given vectors
v1, v2, v3, construct the vector equation in unknowns c1, c2, c3

c1v1 + c2v2 + c3v3 = 0.

Solve the system for c1, c2, c3. The vectors are independent if and only
if the system has unique solution c1 = c2 = c3 = 0.

Why does the test work? The vector v = c1v1+c2v2+c3v3 is formed
by two applications of the parallelogram rule: first add the scaled vectors
c1v1, c2v2 and secondly add the scaled vector c3v3 to the resultant. The
zero vector v = 0 can be obtained from a vector triad v1, v2, v3 only if
the scaling factors c1, c2, c3 are all zero.

Geometric Dependence of Three Vectors. Given vectors v1, v2,
v3, they are dependent if and only if they are not independent. The
three subcases that occur can be analyzed geometrically by the theorem
proved earlier:

Any nonvoid subset of an independent set is also indepen-
dent.

The three cases:

1. There is a dependent subset of one vector. Then one of them is
the zero vector.

2. There is a dependent subset of two vectors. Then two of them lie
along the same line.

2. There is a dependent subset of three vectors. Then one of them is
in the plane of the other two.

In summary, three dependent vectors in R3 cannot be the edges of a
parallelepiped. Algebraic detection of dependence is by failure of the
independence test: after solving the system c1v1 + c2v2 + c3v3 = 0, one
of the three constants c1, c2, c3 is nonzero8.

Independence in an Abstract Vector Space. Let v1, . . . , vk

be a finite set of vectors in an abstract vector space V . The set is
independent if and only if the system of equations in unknowns c1,
. . . , ck

c1v1 + · · ·+ ckvk = 0

has unique solution c1 = · · · = ck = 0.

8In practical terms, there is at least one free variable, or equivalently, appearing
in the solution formula is at least one invented symbol t1, t2, . . . .
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Independence means that each linear combination v = c1v1 + · · ·+ ckvk

is represented by a unique set of constants c1, . . . , ck.

A set of vectors is called dependent if and only if it is not independent.
This means that the system of equations in variables c1, . . . , ck has a
solution with at least one variable cj nonzero.

Theorem 15 (Independence of Two Vectors)
Two vectors in an abstract vector space V are independent if and only if
neither is the zero vector and each is not a constant multiple of the other.

Theorem 16 (Zero Vector)
An independent set in an abstract vector space V cannot contain the zero
vector. Moreover, an independent set cannot contain a vector which is a
linear combination of the others.

Theorem 17 (Unique Representation)
Let v1, . . . , vk be independent vectors in an abstract vector space V . If
scalars a1, . . . , ak and b1, . . . , bk satisfy the relation

a1v1 + · · ·+ akvk = b1v1 + · · ·+ bkvk

then the coefficients must match:
a1 = b1,
a2 = b2,
...
ak = bk.

Independence and Dependence Tests for Fixed
Vectors

Recorded here are a number of useful algebraic tests to determine inde-
pendence or dependence of a finite list of fixed vectors.

Rank Test. In the vector space Rn, the key to detection of indepen-
dence is zero free variables, or nullity zero, or equivalently, maximal
rank. The test is justified from the formula nullity(A) + rank(A) = k,
where k is the column dimension of A.

Theorem 18 (Rank-Nullity Test for Three Vectors)
Let v1, v2, v3 be 3 column vectors in Rn and let their n × 3 augmented
matrix be

A = aug(v1, v2, v3).

The vectors v1, v2, v3 are independent if rank(A) = 3 and dependent
if rank(A) < 3. The conditions are equivalent to nullity(A) = 0 and
nullity(A) > 0, respectively.
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Theorem 19 (Rank-Nullity Test)
Let v1, . . . , vk be k column vectors in Rn and let A be their n × k aug-
mented matrix. The vectors are independent if rank(A) = k and depen-
dent if rank(A) < k. The conditions are equivalent to nullity(A) = 0 and
nullity(A) > 0, respectively.

Proof: The proof will be given for k = 3, because a small change in the text
of this proof is a proof for general k.

Suppose rank(A) = 3. Then there are 3 leading ones in rref(A) and zero free
variables. Therefore, Ac = 0 has unique solution c = 0.

The independence of the 3 vectors is decided by solving the vector equation

c1v1 + c2v2 + c3v3 = 0

for the constants c1, c2, c3. The vector equation says that a linear combina-
tion of the columns of matrix A is the zero vector, or equivalently, Ac = 0.
Therefore, rank(A) = 3 implies c = 0, or equivalently, c1 = c2 = c3 = 0. This
implies that the 3 vectors are linearly independent.

If rank(A) < 3, then there exists at least one free variable. Then the equation
Ac = 0 has at least one nonzero solution c. This implies that the vectors are
dependent.

The proof is complete.

Determinant Test. In the unusual case when the system arising in
the independence test can be expressed as Ac = 0 and A is square, then
det(A) = 0 detects dependence, and det(A) 6= 0 detects independence.
The reasoning is based upon the formula A−1 = adj(A)/ det(A), valid
exactly when det(A) 6= 0.

Theorem 20 (Determinant Test)
Let v1, . . . , vn be n column vectors in Rn and let A be the augmented
matrix of these vectors. The vectors are independent if det(A) 6= 0 and
dependent if det(A) = 0.

Proof: Algebraic independence requires solving the system of equations

c1v1 + · · ·+ ckvk = 0

for constants c1, . . . , ck. The left side of the equation is a linear combination
of the columns of the augmented matrix A, and therefore the system can be
represented as the matrix equation Ac = 0. If det(A) 6= 0, then A−1 exists.
Multiply Ac = 0 by the inverse matrix to imply Ic = A−1Ac = A−10 = 0, or
c = 0. Then the vectors are independent.

Conversely, if the vectors are independent, then the system Ac = 0 has a unique
solution c = 0, known to imply A−1 exists or equivalently det(A) 6= 0. The
proof is complete.
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Orthogonal Vector Test. In some applications the vectors being
tested are known to satisfy orthogonality conditions. For three vec-
tors, these conditions are written

v1 · v1 > 0 v2 · v2 > 0 v3 · v3 > 0,
v1 · v2 = 0 v2 · v3 = 0 v3 · v1 = 0.

(1)

The equations mean that the vectors are nonzero and pairwise 90◦ apart.
The set of vectors is said to be pairwise orthogonal, or briefly, orthog-
onal. For a list of k vectors, the orthogonality conditions are written

vi · vi > 0, vi · · ·vj = 0, 1 ≤ i, j ≤ k, i 6= j.(2)

Theorem 21 (Orthogonal Vector Test)
A set of nonzero pairwise orthogonal vectors v1, . . . , vk is linearly indepen-
dent.

Proof: The proof will be given for k = 3, because the details are easily supplied
for k vectors, by modifying the displays in the proof. We must solve the system
of equations

c1v1 + c2v2 + c3v3 = 0

for the constants c1, c2, c3. This is done for constant c1 by taking the dot
product of the above equation with vector v1, to obtain the scalar equation

c1v1 · v1 + c2v1 · v2 + c3v1 · v3 = v1 · 0.

Using the orthogonality relations v1 ·v2 = 0, v2 ·v3 = 0, v3 ·v1 = 0, the scalar
equation reduces to

c1v1 · v1 + c2(0) + c3(0) = 0.

Because v1 · v1 > 0, then c1 = 0. Symmetrically, vector v2 replacing v1, the
scalar equation becomes

c1(0) + c2v2 · v2 + c3(0) = 0.

Again, we show c2 = 0. The argument for c3 = 0 is similar. The conclusion:
c1 = c2 = c3 = 0. Therefore, the three vectors are independent. The proof is
complete.

Independence Tests for Functions

Recorded here are a number of useful algebraic tests to determine inde-
pendence of a finite list of functions. Neither test is an equivalence. A
test applies to determine independence, but dependence is left undeter-
mined. No results here imply that a list of functions is dependent.
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Sampling Test for Functions. Let f1, f2, f3 be three functions
defined on a domain D. Let V be the vector space of all functions on D
with the usual scalar multiplication and addition rules learned in college
algebra. Addressed here is the question of how to test independence and
dependence of f1, f2, f3 in V . The vector relation

c1
~f1 + c2

~f2 + c3
~f3 = ~0

means
c1f1(x) + c2f2(x) + c3f3(x) = 0, x in D.

An idea how to solve for c1, c2, c3 arises by sampling, which means 3
relations are obtained by choosing 3 values for x, say x1, x2, x3. The
equations arising are

c1f1(x1) + c2f2(x1) + c3f3(x1) = 0,
c1f1(x2) + c2f2(x2) + c3f3(x2) = 0,
c1f1(x3) + c2f2(x3) + c3f3(x3) = 0.

This system of 3 equations in 3 unknowns can be written in matrix form
Ac = 0, where the coefficient matrix A and vector c of unknowns c1, c2,
c3 are defined by

A =

 f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

 , c =

 c1

c2

c3

 .

The matrix A is called the sampling matrix for f1, f2, f3 with samples
x1, x2, x3.

The system Ac = 0 has unique solution c = 0, proving f1, f2, f3 inde-
pendent, provided det(A) 6= 0.

All of what has been said here for three functions applies to k func-
tions f1, . . . , fk, in which case k samples x1, . . . , xk are invented. The
sampling matrix A and vector c of variables are then

A =


f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
... · · ·

...
f1(xk) f2(xk) · · · fk(xk)

 , c =


c1

c2
...
ck

 .

Theorem 22 (Sampling Test for Functions)
The functions f1, . . . , fk are linearly independent on an x-set D provided
there is a sampling matrix A constructed from invented samples x1, . . . , xk

in D such that det(A) 6= 0.

It is false that independence of the functions implies det(A) 6= 0. The
relation det(A) 6= 0 depends on the invented samples.
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Vandermonde Determinant. Choosing the functions in the sampling
test to be 1, x, x2 with invented samples x1, x2, x3 gives the sampling
matrix

V (x1, x2, x3) =

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 .

The sampling matrix is called a Vandermonde matrix. Using the
polynomial basis f1(x) = 1, f2(x) = x, . . . , fk(x) = xk−1 and invented
samples x1, . . . , xk gives the k × k Vandermonde matrix

V (x1, . . . , xk) =


1 x1 · · · xk−1

1

1 x2 · · · xk−1
2

...
... · · ·

...
1 xk · · · xk−1

k

 .

Theorem 23 (Vandermonde Determinant Identity)
The Vandermonde matrix satisfies det(V ) 6= 0 for distinct samples, because
of the identity

det(V (x1, . . . , xk)) = Π
i<j

(xj − xi).

Proof: Let us prove the identity for the case k = 3, which serves to simplify
notation and displays. Assume distinct samples x1, x2, x3. We hope to establish
for k = 3 the identity

det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

The identity is proved from determinant properties, as follows. Let f(x) =
det(V (x, x2, x3). In finer detail, replace x1 by x in the Vandermonde matrix
followed by evaluating the determinant. Let A = V (x, x2, x3) to simplify nota-
tion. Cofactor expansion along row one of det(A) reveals that the determinant
f(x) = det(A) is a polynomial in variable x of degree 2:

f(x) = (1)(+1) cof(A, 1, 1) + (x)(−1) cof(A, 1, 2) + (x2)(+1) cof(A, 1, 3).

Duplicate rows in a determinant cause it to have zero value, therefore A has
determinant zero when we substitute x = x2 or x = x3. This means the
quadratic equation f(x) = 0 has distinct roots x2, x3. The factor theorem of
college algebra applies to give two factors x− x + 2 and x− x3. Then

f(x) = c(x3 − x)(x2 − x),

where c is some constant. We examine the cofactor expansion along the first
row in the previous display, match the coefficient of x2, to show that c =
minor(A, 1, 3) = det(V (x2, x3). Then

f(x) = det(V (x2, x3))(x3 − x)(x2 − x).

After substitution of x = x1, the equation becomes

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).
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An induction argument for the k × k case proves that

det(V (x1, x2, . . . , xk)) = det(V (x2, . . . , xk))Πk
j=2(xj − x1).

This is a difficult induction for a novice. The reader should try first to establish
the above identity for k = 4, by repeating the cofactor expansion step in the
4 × 4 case. The preceding identity is solved recursively to give the claimed
formula for the case k = 3:

det(V (x1, x2, x3)) = det(V (x2, x3))[(x3 − x1)(x2 − x1)]
= det(V (x3))(x3 − x2)[(x3 − x1)(x2 − x1)]
= 1 · (x3 − x2)(x3 − x1)(x2 − x1).

The induction proof uses a step like the one below, in which the identity is
assumed for all matrix dimensions less than 4:

det(V (x1, x2, x3, x4)) = det(V (x2, x3, x4))[(x4 − x1)(x3 − x1)(x2 − x1)]
= (x4 − x3)(x4 − x2)(x3 − x2)[(x4 − x1)(x3 − x1)(x2 − x1)]
= (x4 − x3)(x4 − x2)(x4 − x1)(x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions. The test will be explained first
for two functions f1, f2. Independence of f1, f2, as in the sampling test,
is decided by solving for constants c1, c2 in the equation

c1f1(x) + c2f2(x) = 0, for all x.

J. M. Wronski suggested to solve for the constants by differentiation of
this equation, obtaining a pair of equations

c1f1(x) + c2f2(x) = 0,
c1f
′
1(x) + c2f

′
2(x) = 0, for all x.

This is a system of equations Ac = 0 with coefficient matrix A and
variable list vector c given by

A =

(
f1(x) f2(x)
f ′1(x) f ′2(x)

)
, c =

(
c1

c2

)
.

The Wonskian Test is simply det(A) 6= 0 implies c = 0, similar to the
sampling test:

det(

(
f1(x) f2(x)
f ′1(x) f ′2(x)

)
) 6= 0 for some x implies f1, f2 independent.

Interesting about Wronski’s idea is that it requires the invention of just
one sample x such that the determinant is non-vanishing, in order to
establish independence of the two functions.
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Wonskian Test for n Functions. Given functions f1, . . . , fn each
differentiable n − 1 times on an interval a < x < b, the Wronskian
determinant 9 is defined by the relation

W (f1, . . . , fn)(x) = det


f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
... · · ·

...
f

(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

 .

Theorem 24 (Wronskian Test)
Let functions f1, . . . , fn be differentiable n−1 times on interval a < x < b.
Then W (f1, . . . , fn)(x0) 6= 0 for some x0 in (a, b) implies f1, . . . , fn are
independent functions in the vector space V of all functions on (a, b).

Proof: The objective of the proof is to solve the equation

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, for all x,

for the constants c1, . . . , cn, showing they are all zero. The idea of the proof,
attributed to Wronski, is to differentiate the above equation n− 1 times, then
substitute x = x0 to obtain a homogeneous n × n system Ac = 0 for the
components c1, . . . , cn of the vector c. Because det(A) = W (f1, . . . , fn)(x0) 6=
0, the inverse matrix A−1 = adj(A)/ det(A) exists. Multiply Ac = 0 on the left
by A−1 to obtain c = 0, completing the proof.
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5.5 Basis, Dimension and Rank

The topics of basis, dimension and rank apply to the study of Euclidean
spaces, continuous function spaces, spaces of differentiable functions and
general abstract vector spaces.

Definition 5 (Span)
Let vectors v1, . . . , vk be given in a vector space V . The subset S of V
consisting of all linear combinations v = c1v1 + · · · + ckvk is called the
span of the vectors v1, . . . , vk and written

S = span(v1, . . . , vk).

Theorem 25 (A Span of Vectors is a Subspace)
A subset S = span(v1, . . . , vk) is a subspace of V .

Proof: Details will be supplied for k = 3, because the text of the proof can be
easily edited to give the details for general k. The vector space V is an abstract
vector space, and we do not assume that the vectors are fixed vectors. Let v1,
v2, v3 be given vectors in V and let

S = span(v1, v2, v3) = {v : v = c1v1 + c2v2 + c3v3}.

The subspace criterion will be applied to prove that S is a subspace of V .

(1) We show 0 is in S. Choose c1 = c2 = c3 = 0, then v = c1v1+c2v2+c3v3 = 0.
Therefore, 0 is in S.

(2) Assume v = a1v1 + a2v2 + a3v3 and w = b1v1 + b2v2 + b3v3 are in S. We
show that v + w is in S, by adding the equations:

v + w = a1v1 + a2v2 + a3v3 + b1v1 + b2v2 + b3v3

= (a1 + b1)v1 + (a2 + b2)v2 + (a3 + b3)v3

= c1v1 + c2v2 + c3v3

where the constants are defined by c1 = a1 − b1, c2 = a2 − b2, c3 = a3 − b3.
Then v + w is in S.

(3) Assume v = a1v1 + a2v2 + a3v3 and c is a constant. We show cv is in S.
Multiply the equation for v by c to obtain

cv = ca1v1 + ca2v2 + ca3v3

= c1v1 + c2v2 + c3v3

where the constants are defined by c1 = ca1, c2 = ca2, c3 = ca3. Then cv is in
S.

The proof is complete.

Definition 6 (Basis)
A basis for a vector space V is defined to be an independent set of
vectors such that each vector in V is a linear combination of finitely
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many vectors in the basis. We say that the independent vectors span
V .

If the set of independent vectors is finite, then V is called finite dimen-
sional. Otherwise, it is called infinite dimensional.

Definition 7 (Dimension)
The dimension of a finite-dimensional vector space V is defined to be
the number of vectors in a basis.

Because of the following result, for finite dimensional V , the term di-
mension is well-defined.

Theorem 26 (Dimension)
If a vector space V has a basis v1, . . . , vp and also a basis u1, . . . , uq,
then p = q.

Proof: The proof proceeds by the formal method of contradiction. Assume the
hypotheses are true and the conclusion is false. Then p 6= q. Without loss of
generality, let the larger basis be listed first, p > q.

Because u1, . . . , uq is a basis of the vector space V , then there are coefficients
{aij} such that

v1 = a11u1 + · · · + a1quq,
v2 = a21u1 + · · · + a2quq,

...
vp = ap1u1 + · · · + apquq.

Let A = [aij ] be the p× q matrix of coefficients. Because p > q, then rref(AT )
has at most q leading variables and at least p− q > 0 free variables.

Then the q × p homogeneous system AT x = 0 has infinitely many solutions.
Let x be a nonzero solution of AT x = 0.

The equation AT x = 0 means
∑p

i=1 aijxi = 0 for 1 ≤ j ≤ p, giving the
dependence relation ∑p

i=1 xivi =
∑p

i=1 xi

∑q
j=1 aijuj

=
∑q

j=1

∑p
i=1 aijxiuj

=
∑q

j=1(0)uj

= 0

The independence of v1, . . . , vp is contradicted. By the method of contradic-
tion, we conclude that p = q. The proof is complete.

Euclidean Spaces. The space Rn has a standard basis consisting of
the columns of the n× n identity matrix:

1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1

 .
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The determinant test implies they are independent. They span Rn due
to the formula

c1

c2

c3
...

cn

 = c1


1
0
0
...
0

+ c2


0
1
0
...
0

+ · · ·+ cn


0
0
0
...
1

 .

Therefore, the columns of the identity matrix are a basis, and Rn has
dimension n. More generally,

Theorem 27 (Bases in Rn)
Any basis of Rn has exactly n independent vectors. Further, any list of
n + 1 or more vectors in Rn is dependent.

Proof: The first result is due to the fact that all bases contain the same identical
number of vectors. Because the columns of the n× n identity are independent
and span Rn, then all bases must contain n vectors, exactly.
A list of n+1 vectors v1, . . . , vn+1 generates a subspace S = span(v1, . . . , vn+1).
Because S is contained in Rn, then S has a basis of n elements of less. There-
fore, the list of n + 1 vectors is dependent.
The proof is complete.

Polynomial Spaces. The vector space of all polynomials p(x) = p0 +
p1x + p2x

2 has dimension 3, because a basis is 1, x, x2 in this func-
tion space. Formally, the basis elements are obtained from the general
solution p(x) by partial differentiation on the symbols p0, p1, p2.

Differential Equations. The equation y′′ + y = 0 has general solution
y = c1 cos x + c2 sin x. Therefore, the formal partial derivatives ∂c1 , ∂c2

applied to the general solution y give a basis cos x, sin x. The solution
space of y′′ + y = 0 has dimension 2.

Similarly, y′′′ = 0 has a solution basis 1, x, x2 and therefore its solution
space has dimension 3. Generally, an nth order linear homogeneous
scalar differential equation has solution space V of dimension n, and
an n × n linear homogeneous system y′ = Ay has solution space V of
dimension n. A general procedure for finding a basis for a differential
equation:

Let a differential equation have general solution expressed
in terms of arbitrary constants c1, c2, . . . , then a basis is
found by taking the partial derivatives ∂c1 , ∂c2 , . . . .

Largest Subset of Independent Vectors

Let vectors v1, . . . , vk be given in Rn. Then the subset

S = span(v1, . . . , vk)
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of Rn consisting of all linear combinations v = c1v1 + · · ·+ckvk is a sub-
space of Rn. This subset is identical to the set of all linear combinations
of the columns of the augmented matrix A of v1, . . . , vk.

Because matrix multiply is a linear combination of columns, that is,

A

 c1
...

cn

 = c1v1 + · · ·+ ckvk,

then S is also equals the image of the matrix A, written in literature as

S = Image(A) = {Ac : vector c arbitrary}.

Discussed here are efficient methods for finding a basis for S. Equiva-
lently, we find a largest subset of independent vectors from the vectors
v1, . . . , vk. Such a largest subset spans S and is independent, therefore
it is a basis for S.

Iterative Method for a Largest Independent Subset. A
largest independent subset can be identified as vi1 , . . . , vip for some
distinct subscripts i1 < · · · < ip. We describe how to find such sub-
scripts. Let i1 be the first subscript such that vi1 6= 0. Define i2 to be
the first subscript greater than i1 such that

rank(aug(v1, . . . , vi1)) < rank(aug(v1, . . . , vi2)).

The process terminates if there is no such i2 > i1. Otherwise, proceed
in a similar way to define i3, i4, . . ., ip. The iterative process uses
the toolkit swap, combination and multiply to determine the rank.
Computations can use a smaller matrix on each iterative step, because
of the following fact.

rank(aug(v1, v2, . . . , viq)) = rank(aug(vi1 , vi2 , . . . , viq)).

Why does it work? Because each column added to the augmented matrix
which increases the rank cannot be a linear combination of the preceding
columns. In short, that column is independent of the preceding columns.

Pivot Column Method. A column j of A is called a pivot column
provided rref(A) has a leading one in column j. The leading ones in
rref(A) belong to consecutive initial columns of the identity matrix I.

Lemma 1 (Pivot Columns and Dependence) A non-pivot column of A
is a linear combination of the pivot columns of A.
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Proof: Let column j of A be non-pivot. Consider the homogeneous system
Ax = 0 and its equivalent system rref(A)x = 0. The pivot column subscripts
determine the leading variables and the remaining column subscripts determine
the free variables. Define xj = 1. Define all other free variables to be zero. The
lead variables are now determined and the resulting nonzero vector x satisfies
the homogeneous equation rref(A)x = 0, and hence also Ax = 0. Translating
this equation into a linear combination of columns implies ∑

pivot subscripts i

xivi

+ vj = 0

which in turn implies that column j of A is a linear combination of the pivot
columns of A.

Theorem 28 (Pivot Columns and Independence)
The pivot columns of a matrix A are linearly independent.

Proof: Let v1, . . . , vk be the vectors that make up the columns of A. Let
i1, . . . , ip be the pivot columns of A. Independence is proved by solving the
system of equations

c1vi1 + · · ·+ cpvip = 0

for the constants c1, . . . , cp, eventually determining they are all zero. The tool
used to solve for the constants is the elementary matrix formula

A = M rref(A), M = E1E2 · · ·Er,

where E1, . . . , Er denote certain elementary matrices. Each elementary matrix
is the inverse of a swap, multiply or combination operation applied to A, in
order to reduce A to rref(A). Because elementary matrices are invertible, then
M is invertible. The equation A = aug(v1, . . . , vk) implies the pivot columns
of A satisfy the equation

viq
= Meq, q = 1, . . . , p,

where e1 = col(I, 1), . . . , ep = col(I, p) are the consecutive columns of the
identity matrix which occupy the columns of the leading ones in rref(A). Then

0 = c1vi1 + · · ·+ cpvip

= M(c1e1 + · · ·+ cpep)

implies by invertibility of M that

c1e1 + · · ·+ cpep = 0.

Distinct columns of the identity matrix are independent (subsets of independent
sets are independent), therefore c1 = · · · = cp = 0. The independence of the
pivot columns of A is established.
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Rank and Nullity

The rank of a matrix A equals the number of leading ones in rref(A).
The nullity of a matrix A is the number of free variables in the system
rref(A)x = 0, or equivalently, the number of columns of A less the rank
of A. Symbols rank(A) and nullity(A) denote these two integer values
and we record for future use the result

Theorem 29 (Rank-Nullity Theorem)

rank(A) + nullity(A) = column dimension of A.

In terms of the system Ax = 0, the rank of A is the number of leading
variables and the nullity of A is the number of free variables, in the
reduced echelon system rref(A)x = 0.

Theorem 30 (Basis for Ax = 0)
Assume

k = nullity(A) = dim {x : Ax = 0} > 0.

Then the solution set of Ax = 0 can be expressed as

x = t1x1 + · · ·+ tkxk(1)

where x1, . . . , xk are linearly independent solutions of Ax = 0 and t1, . . . ,
tk are arbitrary scalars (the invented symbols for free variables).

Proof: The system rref(A)x = 0 has exactly the same solution set as Ax = 0.
This system has a standard general solution x expressed in terms of invented
symbols t1, . . . , tk. Define xj = ∂tj

x, j = 1, . . . , k. Then (1) holds. It remains
to prove independence, which means we are to solve for c1, . . . , ck in the system

c1x1 + · · ·+ ckxk = 0.

The left side is a solution x of Ax = 0 in which the invented symbols have been
assigned values c1, . . . , ck. The right side implies each component of x is zero.
Because the standard general solution assigns invented symbols to free variables,
the relation above implies that each free variable is zero. But free variables have
already been assigned values c1, . . . , ck. Therefore, c1 = · · · = ck = 0. The
proof is complete.

Theorem 31 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of inde-
pendent columns of A. Equivalently, rank(A) = rank(AT ).

Proof: Let S be the set of all linear combinations of columns of A. Then
S = span(columns of A) = Image(A). The non-pivot columns of A are lin-
ear combinations of pivot columns of A. Therefore, any linear combination of
columns of A is a linear combination of the p = rank(A) linearly independent
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pivot columns. By definition, the pivot columns form a basis for the vector
space S, and p = rank(A) = dim(S).

The span R of the rows of A is defined to be the set of all linear combinations
of the columns of AT .

Let q = rank(AT ) = dim(R). It will be shown that p = q, which proves the
theorem.

Let rref(A) = E1 · · ·EkA where E1, . . . , Ek are elementary swap, multiply
and combination matrices. The invertible matrix M = E1 · · ·Ek satisfies the
equation rref(A) = MA, and therefore

rref(A)T = AT MT

. The matrix rref(A)T of the left has its first p columns independent and its
remaining columns are zero. Each nonzero column of rref(A)T is expressed on
the right as a linear combination of the columns of AT . Therefore, R contains p
independent vectors. The number q = dim(R) is the vector count in any basis
for R. This implies p ≤ q.

The preceding display can be solved for AT , because MT is invertible, giving

AT = rref(A)T (MT )−1.

Then every column of AT is a linear combination of the p nonzero columns of
rref(A)T . This implies a basis for R contains at most p elements, i.e., q ≤ p.

Combining p ≤ q with q ≤ p proves p = q. The proof is complete.

The results of the preceding theorems are combined to obtain the pivot
method for finding a largest independent subset.

Theorem 32 (Pivot Method)
Let A be the augmented matrix of fixed vectors v1, . . . , vk. Let the leading
ones in rref(A) occur in columns i1, . . . , ip. Then a largest independent
subset of the k vectors v1, . . . , vk is the set of pivot columns of A, that is,
the vectors

vi1 , vi2 , . . . , vip .

Nullspace, Column Space and Row Space

Definition 8 (Kernel)
The kernel or nullspace of an m × n matrix A is the vector space of
all solutions x to the homogeneous system Ax = 0.

In symbols,

kernel(A) = nullspace(A) = {x : Ax = 0}.

Definition 9 (Column Space)
The column space of m× n matrix A is the vector space consisting of
all vectors y = Ax, where x is arbitrary in Rn.
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In literature, the column space is also called the image of A, or the span
of the columns of A. Because Ax can be written as a linear combination
of the columns v1, . . . , vn of A, the column space is the set of all linear
combinations

y = x1v1 + · · ·+ xnvn.

In symbols,

Image(A) = colspace(A) = {y : y = Ax for some x} = span(v1, . . . , vn).

The row space of m × n matrix A is the vector space consisting of
vectors w = AT y, where y is arbitrary in Rm. Technically, the row
space of A is the column space of AT . This vector space is viewed as the
set of all linear combinations of rows of A. In symbols,

rowspace(A) = colspace(AT ) = {w : w = AT y for some y}.

The row space of A and the null space of A live in Rn, but the column
space of A lives in Rm. The correct bases are obtained as follows. If an
alternative basis for rowspace(A) is suitable (rows of A not reported),
then bases for rowspace(A), colspace(A), nullspace(A) can all be
found by calculating just rref(A).

Null Space. Compute rref(A). Write out the general solution x to
Ax = 0, where the free variables are assigned invented symbols t1,
. . . , tk. Report the basis for nullspace(A) as the list of partial
derivatives ∂t1x, . . . , ∂tkx.

Column Space. Compute rref(A). Identify the lead variable columns
i1, . . . , ik. Report the basis for colspace(A) as the list of columns
i1, . . . , ik of A. These are the pivot columns of A.

Row Space. Compute rref(AT ). Identify the lead variable columns i1,
. . . , ik. Report the basis for rowspace(A) as the list of rows i1,
. . . , ik of A.

Alternatively, compute rref(A), then rowspace(A) has a basis
consisting of the list of nonzero rows of rref(A). The two bases
obtained by these methods are different, but equivalent.

Due to the identity nullity(A) + rank(A) = n, where n is the column
dimension of A, the following results hold. Notation: dim(V ) is the
dimension of vector space V , which equals the number of elements in a
basis for V . Recall that nullspace(A) = kernel(A) and colspace(A) =
Image(A) are subspaces with dual naming conventions in the literature.

Theorem 33 (Dimension Identities)
(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)
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(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

(c) dim(rowspace(A)) = rank(A)

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

(e) dim(kernel(A)) + dim(kernel(AT )) = column dimension of A

Equivalent Bases

Assume v1, . . . , vk are independent vectors in an abstract vector space
V and S is the subspace of V consisting of all linear combinations of v1,
. . . , vk.

Let u1, . . . , u` be independent vectors in V . We study the question of
whether or not u1, . . . , u` is a basis for S. First of all, all the vectors
u1, . . . , u` have to be in S, otherwise this set cannot possibly span S.
Secondly, to be a basis, the vectors u1, . . . , u` must be independent.
Two bases for S must have the same number of elements, by Theorem
26. Therefore, k = ` is necessary for a possible second basis of S.

Theorem 34 (Equivalent Bases of a Subspace S)
Let v1, . . . , vk be independent vectors in an abstract vector space V . Let
S be the subspace of V consisting of all linear combinations of v1, . . . , vk.

A set of vectors u1, . . . , u` in V is an equivalent basis for S if and only

(1) Each of u1, . . . , u` is a linear combination of v1, . . . , vk.

(2) The set u1, . . . , u` is independent.

(3) The sets are the same size, k = `.

An Equivalence Test in Rn

Assume given two sets of fixed vectors v1, . . . , vk and u1, . . . , u`, in
the same space Rn. A test will be developed for equivalence of bases,
in a form suited for use in computer algebra systems and numerical
laboratories.

Theorem 35 (Equivalence Test for Bases)
Define augmented matrices

B = aug(v1, . . . , vk)
C = aug(u1, . . . , u`)
W = aug(B, C)

The relation

k = ` = rank(B) = rank(C) = rank(W )

implies
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1. v1, . . . , vk is an independent set.

2. u1, . . . , u` is an independent set.

3. span{v1, . . . , vk} = span{u1, . . . , u`}

In particular, colspace(B) = colspace(C) and each set of vectors is an
equivalent basis for this vector space.

Proof: Because rank(B) = k, then the first k columns of W are independent.
If some column of C is independent of the columns of B, then W would have k+1
independent columns, which violates k = rank(W ). Therefore, the columns of
C are linear combinations of the columns of the columns of B. The vector space
U = colspace(C) is therefore a subspace of the vector space V = colspace(B).
Because each vector space has dimension k, then U = V. The proof is complete.

Computer illustration. The following maple code applies the theorem
to verify that the two bases determined from the colspace command in
maple and the pivot columns of A are equivalent. In maple, the report
of the column space basis is identical to the nonzero rows of rref(AT ).

with(linalg):
A:=matrix([[1,0,3],[3,0,1],[4,0,0]]);
colspace(A); # Solve Ax=0, basis v1,v2 below
v1:=vector([2,0,-1]);v2:=vector([0,2,3]);
rref(A); # Find the pivot cols=1,3
u1:=col(A,1); u2:=col(A,3); # pivot col basis
B:=augment(v1,v2); C:=augment(u1,u2);
W:=augment(B,C);
rank(B),rank(C),rank(W); # Test requires all equal 2

A false test. The relation

rref(B) = rref(C)

holds for a substantial number of examples. However, it does not imply
that each column of C is a linear combination of the columns of B. For
example, define

B =

 1 0
0 1
1 1

 , C =

 1 1
0 1
1 0

 .

Then

rref(B) = rref(C) =

 1 0
0 1
0 0

 ,

but col(C, 2) is not a linear combination of the columns of B. This means
V = colspace(B) is not equal to U = colspace(C). Geometrically, V
and U are planes in R3 which intersect only along the line L through the
two points (0, 0, 0) and (1, 0, 1).
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