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Studied here are planar autonomous systems of differential equations.
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10.1 Autonomous Planar Systems

A set of two scalar differential equations of the form

x′(t) = F (x(t), y(t)),
y′(t) = G(x(t), y(t)).

(1)

is called a planar autonomous system. The term autonomous
means self-governing, justified by the absence of the time variable t
in the functions F (x, y), G(x, y).

To obtain the vector form, let x(t) =

(
x(t)
y(t)

)
, f(x, y) =

(
F (x, y)
G(x, y)

)
and write (1) as the first order vector-matrix system

x′(t) = f(x(t)).(2)

It is assumed that F , G are continuously differentiable in some region
D in the xy-plane. This assumption makes f continuously differentiable
in D and guarantees that Picard’s existence-uniqueness theorem for ini-
tial value problems applies to the initial value problem x′(t) = f(x(t)),
x(0) = x0. Accordingly, to each x0 = (x0, y0) in D there corresponds a
unique solution x(t) = (x(t), y(t)), represented as a planar curve in the
xy-plane, which passes through x0 at t = 0.

Such a planar curve is called a trajectory of the system and its param-
eter interval is some maximal interval of existence T1 < t < T2, where
T1 and T2 might be infinite. The graphic of a trajectory drawn as a
parametric curve in the xy-plane is called a phase portrait and the
xy-plane in which it is drawn is called the phase plane.

Trajectories don’t cross. Autonomy of the planar system plus
uniqueness of initial value problems implies that trajectories (x1(t), y1(t))
and (x2(t), y2(t)) cannot touch or cross. Hand-drawn phase portraits are
accordingly limited: you cannot draw a solution trajectory that touches
another solution curve!

Theorem 1 (Identical trajectories)
Assume that Picard’s existence-uniqueness theorem applies to initial value
problems in D for the planar system (1). Let (x1(t), y1(t)) and (x2(t), y2(t))
be two trajectories of system (1). If times t1, t2 exist such that

x1(t1) = x2(t2), y1(t1) = y2(t2),(3)

then for the value c = t1−t2 the equations x1(t+c) = x2(t) and y1(t+c) =
y2(t) are valid for all allowed values of t. This means that the two trajectories
are on one and the same planar curve, or in the contrapositive, two different
trajectories cannot touch or cross in the phase plane.
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Proof: Define x(t) = x1(t+ c), y(t) = y1(t+ c). By the chain rule, (x(t), y(t))
is a solution of the planar system, because x′(t) = x′1(t+c) = F (x1(t+c), y1(t+
c)) = F (x(t), y(t)), and similarly for the second differential equation. Further,
(3) implies x(t2) = x2(t2) and y(t2) = y2(t2), therefore Picard’s uniqueness
theorem implies that x(t) = x2(t) and y(t) = y2(t) for all allowed values of t.
The proof is complete.

Equilibria. A trajectory that reduces to a point, or a constant so-
lution x(t) = x0, y(t) = y0, is called an equilibrium solution. The
equilibrium solutions or equilibria are found by solving the nonlinear
equations

F (x0, y0) = 0, G(x0, y0) = 0.

Each such (x0, y0) in D is a trajectory whose graphic in the phase plane
is a single point, called an equilibrium point. In applied literature,
it may be called a critical point, stationary point or rest point.
Theorem 1 has the following geometrical interpretation.

Assuming uniqueness, no other trajectory (x(t), y(t)) in the
phase plane can touch an equilibrium point (x0, y0).

Equilibria (x0, y0) are often found from linear equations

ax0 + by0 = e, cx0 + dy0 = f,

which are solved by linear algebra methods. They constitute an impor-
tant subclass of algebraic equations which can be solved symbolically. In
this special case, symbolic solutions exist for the equilibria.

It is interesting to report that in a practical sense the equilibria may be
reported incorrectly, due to the limitations of computer software, even
in this case when exact symbolic solutions are available. An example is
x′ = x+ y, y′ = εy− ε for small ε > 0. The root of the problem is trans-
lation of ε to a machine constant, which is zero for small enough ε. The
result is that computer software detects infinitely many equilibria when
in fact there is exactly one equilibrium point. This example suggests
that symbolic computation be used by default.

Practical methods for computing equilibria. There is no sup-
porting theory to find equilibria for all choices of F and G. However,
there is a rich library of special methods for solving nonlinear algebraic
equations, including celebrated numerical methods such as Newton’s
method and the bisection method. Computer algebra systems like
maple and mathematica offer convenient codes to solve the equations,
when possible, including symbolic solutions. Applied mathematics relies
heavily on the dynamically expanding library of special methods, which
grows monthly due to new mathematical discoveries.
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Population biology. Planar autonomous systems have been applied
to two-species populations like two species of trout, who compete for
food from the same supply, and foxes and rabbits, who compete in a
predator-prey situation.

Trout system. Certain equilibria are significant, because they repre-
sent the population sizes for cohabitation. A point in the phase space
that is not an equilibrium point corresponds to population sizes that
cannot coexist, they must change with time. Some equilibria are con-
sequently observable or average population sizes while non-equilibria
correspond to snapshot population sizes that are subject to flux. Biolo-
gists expect population sizes of such two-species competition models to
undergo change until they reach approximately the observable values.

Rabbit-fox system. This is an example of a predator-prey sys-
tem, in which the expected observable population sizes oscillate periodi-
cally over time. Certain equilibria for these systems represent ideal co-
habitation. Biological experiments suggest that initial population sizes
close to the equilibrium values cause populations to stay near the initial
sizes, even though the populations oscillate periodically. Observations
by biologists of large population variations seem to verify that individual
populations oscillate periodically around the ideal cohabitation sizes.

Trout system. Consider a population of two species of trout who
compete for the same food supply. A typical autonomous planar system
for the species x and y is

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

Equilibria. The equilibrium solutions for this system are

(0, 0), (90, 0), (0, 60), (80, 20).

Only nonnegative population sizes are physically significant. Units for
the population sizes might be in hundreds or thousands of fish. The equi-
librium (0, 0) corresponds to extinction of both species, while (0, 60)
and (90, 0) correspond to the unusual situation of extinction for one
species. The last equilibrium (80, 20) corresponds to co-existence of
the two trout species with observable population sizes of 80 and 20.

Phase Portraits

A graphic which contains all the equilibria and typical trajectories or
orbits of a planar autonomous system (1) is called a phase portrait.
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While graphing equilibria is not a challenge, graphing typical trajectories
seems to imply that we are going to solve the differential system. This
is not the case. The plan is this:

Equilibria Plot in the xy-plane all equilibria of (1).

Window Select an x-range and a y-range for the graph window
which includes all significant equilibria (Figure 3).

Grid Plot a uniform grid of N grid points (N ≈ 50 for hand
work) within the graph window, to populate the graph-
ical white space (Figure 4). The isocline method might
also be used to select grid points.

Field Draw at each grid point a short tangent vector, a re-
placement curve for a solution curve through a grid
point on a small time interval (Figure 5).

Orbits Draw additional threaded trajectories on long time inter-
vals into the remaining white space of the graphic (Figure
6). This is guesswork, based upon tangents to threaded
trajectories matching nearby field tangents drawn in the
previous step. See Figure 1 for matching details.

C

y

x
b

a
Figure 1. Badly threaded orbit.

Threaded solution curve C correctly matches its
tangent to the tangent at nearby grid point a,
but it fails to match at grid point b.

Why does a tangent ~T1 have to match a tangent ~T2 at a nearby grid
point (see Figure 2)? A tangent vector is given by ~T = x′(t) = f(x(t)).
Hence ~T1 = f(u1), ~T2 = f(u2). However, u1 ≈ u2 in the graphic, hence
by continuity of f it follows that ~T1 ≈ ~T2.

y

C

~T1

~T2
u2

u1

x

Figure 2. Tangent matching.

Threaded solution curve C matches its tangent
~T1 at u1 to direction field tangent ~T2 at nearby
grid point u2.

It is important to emphasize that solution curves starting at a grid point
are defined for a small t-interval about t = 0, and therefore their graphics
extend on both sides of the grid point. We intend to shorten these curves
until they appear to be straight line segments, graphically identical to
the tangent line. Adding an arrowhead pointing in the tangent vector
direction is usual. After all this construction, the shaft of the arrow is
graphically identical to a solution curve segment. In fact, if 50 grid points
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were used, then 50 solution curve segments have already been entered
onto the graphic! Threaded orbits are added to show what happens to
solutions that are plotted on longer and longer t-intervals.

Phase portrait illustration. The method outlined above will be
applied to the illustration

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(4)

The equilibria are (1,−1) and (−1, 1). The graph window is selected as
|x| ≤ 2, |y| ≤ 2, in order to include both equilibria. The uniform grid
will be 11× 11, although for hand work 5× 5 is normal. Tangents at the
grid points are short line segments which do not touch each another –
they are graphically the same as short solution curves.

x

(−1, 1)

(1,−1)

−2 2
−2

2
y Figure 3. Equilibria (1,−1), (−1, 1)

for (4) and graph window.

The equilibria (x, y) are calculated from
equations 0 = x+y, 0 = 1−x2. The graph
window |x| ≤ 2, |y| ≤ 2 is invented ini-
tially, then updated until Figure 5 reveals
sufficiently rich field details.

x

y

−2 2
−2

2

Figure 4. Equilibria (1,−1), (−1, 1)
for (4) with 11× 11 uniform grid.

The equilibria (squares) happen to cover
up two grid points (circles). The size 11×
11 is invented to fill the white space in the
graphic.

y

x
1−1

−1

1

Figure 5. Equilibria for (4).
Equilibria (1,−1), (−1, 1) with an 11× 11
uniform grid and direction field.

An arrow shaft at a grid point represents
a solution curve over a small time interval.
Threaded solution curves on long time in-
tervals have tangents matching nearby ar-
row shaft directions.
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Figure 6. Equilibria for (4).
Equilibria (1,−1), (−1, 1) with an 11× 11
uniform grid, threaded solution curves and
arrow shafts from some direction field
arrows.

Threaded solution curve tangents are to
match nearby direction field arrow shafts.
See Figure 1 for how to match tangents.
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x
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1
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Figure 7. Phase portrait for (4).
Shown are typical solution curves and an
11× 11 grid.

The direction field has been removed for clar-
ity. Threaded solution curves do not actu-
ally cross, even though graphical resolution
might suggest otherwise.

Phase plot by computer. Illustrated here is how to make the phase
plot in Figure 8 with the computer algebra system maple.

y

1

−1

−1 1
x

Figure 8. Phase portrait for (4).

The graphic shows typical solution curves
and a direction field. Produced in maple us-
ing a 13× 13 grid.

Before the computer work begins, the differential equation is defined and
the equilibria are computed. Defaults supplied by maple allow an initial
phase portrait to be plotted, from which the graph window is selected.
The initial plot code:

with(DEtools):
des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:
wind:=x=-2..2,y=-2..2:
DEplot({des},[x(t),y(t)],t=-20..20,wind);

The initial plot suggests which initial conditions near the equilibria
should be selected in order to create typical orbits on the graphic. The
final code with initial data and options:

with(DEtools):
des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:
wind:=x=-2..2,y=-2..2:
opts:=stepsize=0.05,dirgrid=[13,13],
axes=none,thickness=3,arrows=small:
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ics:=[[x(0)=-1,y(0)=1.1],[x(0)=-1,y(0)=1.5],
[x(0)=-1,y(0)=.9],[x(0)=-1,y(0)=.6],[x(0)=-1,y(0)=.3],
[x(0)=1,y(0)=-0.9],[x(0)=1,y(0)=-0.6],[x(0)=1,y(0)=-0.6],
[x(0)=1,y(0)=-0.3],[x(0)=1,y(0)=-1.6],[x(0)=1,y(0)=-1.3],
[x(0)=1,y(0)=-1.1]]:
DEplot({des},[x(t),y(t)],t=-20..20,wind,ics,opts);

Direction field by computer. While maple can produce direction
fields with its DEplot tool, the basic code that produces a field can
be written with minimal outside support, therefore it applies to other
programming languages. The code below applies to the example x′ =
x+ y, y′ = 1− x2 treated above.

# 2D phase plane direction field with uniform nxm grid.
# Tangent length is 9/10 the grid box width W0.
a:=-2:b:=2:c:=-2:d:=2:n:=11:m:=11:
H:=evalf((b-a)/(n+1)):K:=evalf((d-c)/(m+1)):W0:=min(H,K):
X:=t->a+H*(t):Y:=t->c+K*(t):P:=[]:
F1:=(x,y)->evalf(x+y):F2:=(x,y)->evalf(1-x^2):
for i from 1 to n do
for j from 1 to m do
x:=X(i):y:=Y(j):M1:=F1(x,y): M2:=F2(x,y):
if (M1 =0 and M2 =0) then # no tangent, make a box
h:=W0/5:V:=plottools[rectangle]([x-h,y+h],[x+h,y-h]):
else
h:=evalf(((1/2)*9*W0/10)/sqrt(M1^2+M2^2)):
p1:=x-h*M1:p2:=y-h*M2:q1:=x+h*M1:q2:=y+h*M2:
V:=plottools[arrow]([p1,p2],[q1,q2],0.2*W0,0.5*W0,1/4):
fi:
if (P = []) then P:=V: else P:=P,V: fi:

od:od:
plots[display](P);

Maple libraries plots and plottools are used. The routine rectangle
requires two arguments ul, lr, which are the upper left (ul) and lower
right (lr) vertices of the rectangle. The routine arrow requires five ar-
guments P , Q, sw, aw, af : the two points P , Q which define the arrow
shaft and direction, plus the shaft width sw, arrowhead width aw and
arrowhead length fraction af (fraction of the shaft length). These prim-
itives plot a polygon from its vertices. The rectangle computes four
vertices and the arrow seven vertices, which are then passed on to the
PLOT primitive to make the graphic.
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Stability

Consider an autonomous system x′(t) = f(x(t)) with f continuously
differentiable in a region D in the plane.

Stable equilibrium. An equilibrium point x0 in D is said to be stable
provided for each ε > 0 there corresponds δ > 0 such that

(a) given x(0) in D with ‖x(0)−x0‖ < δ, then the solution x(t) exists
on 0 ≤ t <∞ and

(b) ‖x(t)− x0‖ < ε for 0 ≤ t <∞.

Unstable equilibrium. The equilibrium point x0 is called unstable
provided it is not stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point x0 is said
to be asymptotically stable provided (a) and (b) hold (it is stable),
and additionally

(c) limt→∞ ‖x(t)− x0‖ = 0 for ‖x(0)− x0‖ < δ.

Applied accounts of stability tend to emphasize item (b). Careful appli-
cation of stability theory requires attention to (a), which is the question
of extension of solutions of initial value problems to the half-axis.

Basic extension theory for solutions of autonomous equations says that
(a) will be satisfied provided (b) holds for those values of t for which x(t)
is already defined. Stability verifications in mathematical and applied
literature often implicitly use extension theory, in order to present details
compactly. The reader is advised to adopt the same predisposition as
researchers, who assume the reader to be equally clever as they.

Physical stability. In the model x′(t) = f(x(t)), physical stability ad-
dresses changes in f as well as changes in x(0). The meaning is this:
physical parameters of the model, e.g., the mass m > 0, damping con-
stant c > 0 and Hooke’s constant k > 0 in a damped spring-mass system

x′ = y,

y′ = − c

m
y − k

m
x,

may undergo small changes without significantly affecting the solution.

In physical stability, stable equilibria correspond to physically ob-
served data whereas other solutions correspond to transient obser-
vations that disappear over time. A typical instance is the trout system

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

(5)
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Physically observed data in the trout system (5) corresponds to the car-
rying capacity, represented by the stable equilibrium point (80, 20),
whereas transient observations are snapshot population sizes that are
subject to change over time. The strange extinction equilibria (90, 0) and
(0, 60) are unstable equilibria, which disagrees with intuition about
zero births for less than two individuals, but agrees with graphical repre-
sentations of the trout system in Figure 9. Changing f for a trout system
adjusts the physical constants which describe the birth and death rates,
whereas changing x(0) alters the initial population sizes of the two trout
species.

Figure 9. Phase portrait for
the trout system (5).

Shown are typical solution curves
and a direction field. Equilibrium
(80, 20) is asymptotically stable (a
square). Equilibria (0, 0), (90, 0),
(0, 60) are unstable (circles).
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10.2 Planar Constant Linear Systems

A constant linear planar system is a set of two scalar differential equa-
tions of the form

x′(t) = ax(t) + by(t)),
y′(t) = cx(t) + dy(t)),

(1)

where a, b, c and d are constants. In matrix form,

x′(t) = Ax(t), A =

(
a b
c d

)
, x(t) =

(
x(t)
y(t)

)
.

Solutions drawn in phase portraits don’t cross, because the system is
autonomous. The origin is always an equilibrium solution. There can
be infinitely many equilibria, found by solving Ax = 0 for the constant
vector x, when A is not invertible.

Recipe. A recipe exists for solving system (1), which parallels the recipe
for second order constant coefficient equations Ay′′+By′+Cy = 0. The
reader should view the result as an advertisement for learning Putzer’s
spectral method, page 618, which is used to derive the formulas.

Theorem 2 (Planar Constant Linear System Recipe)
Consider the real planar system x′(t) = Ax(t). Let λ1, λ2 be the roots of
the characteristic equation det(A−λI) = 0. The real general solution x(t)
is given by the formula

x(t) = Φ(t)x(0)

where the 2× 2 real invertible matrix Φ(t) is defined as follows.

Real λ1 6= λ2 Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 Φ(t) = eλ1t I + teλ1t (A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

Φ(t) = eat
(

cos(bt) I + (A− aI)
sin(bt)
b

)
.

Continuity and redundancy. The formulas are continuous in the
sense that limiting λ1 → λ2 in the first formula or b → 0 in the last
formula produces the middle formula for real double roots. The first
formula is also valid for complex conjugate roots λ1, λ2 = λ1 and it
reduces to the third when λ1 = a + ib, therefore the third formula is
technically redundant, but nevertheless useful, because it contains no
complex numbers.
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Illustrations. Typical cases are represented by the following 2×2 ma-
trices A, which correspond to roots λ1, λ2 of the characteristic equation
which are real distinct, real double or complex conjugate.

λ1 = 5, λ2 = 2

A =
(
−1 3
−6 8

) Real distinct roots.

x(t) =
(
e5t

(
1 0
0 1

)
+ e2t−e5t

2−5

(
−6 3
−6 3

))
x(0).

λ1 = λ2 = 3

A =
(

2 1
−1 4

) Real double root.

x(t) = e3t

(
1− t t
−t 1 + t

)
x(0).

λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

x(t) = e2t

(
cos 3t sin 3t
− sin 3t cos 3t

)
x(0).

Isolated equilibria. An autonomous system is said to have an iso-
lated equilibrium at x = x0 provided x0 is the only constant solution
of the system in |x− x0| < r, for r > 0 sufficiently small.

Theorem 3 (Isolated Equilibrium)
The following are equivalent for a constant planar system x′(t) = Ax(t):

1. The system has an isolated equilibrium at x = 0.

2. det(A) 6= 0.

3. The roots λ1, λ2 of det(A− λI) = 0 satisfy λ1λ2 6= 0.

Proof: The expansion det(A−λI) = (λ1−λ)(λ2−λ) = λ2− (λ1 +λ2)λ+λ1λ2

shows that det(A) = λ1λ2. Hence 2 ≡ 3. We prove now 1 ≡ 2. If det(A) = 0,
then Au = 0 has infinitely many solutions u on a line through 0, therefore
x = 0 is not an isolated equilibrium. If det(A) 6= 0, then Au = 0 has exactly
one solution u = 0, so the system has an isolated equilibrium at x = 0.

Classification of isolated equilibria. For linear equations

x′(t) = Ax(t),

we explain the phase portrait classifications saddle, node, spiral, cen-
ter near the isolated equilibrium point x = 0, and how to detect them
when they occur. Below, λ1, λ2 are the roots of det(A− λI) = 0.

The reader is directed to Figures 10–14 for illustrations of the classifica-
tions.
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Figure 10. Saddle Figure 11. Improper node

Figure 12. Proper node Figure 13. Spiral

Figure 14. Center

Saddle λ1, λ2 real, λ1λ2 < 0

A saddle has solution formula

x(t) = eλ1tc1 + eλ2tc2,

c1 =
A− λ2I

λ1 − λ2
x(0), c2 =

A− λ1I

λ2 − λ1
x(0).

The phase portrait shows two lines through the origin which
are tangents at t = ±∞ for all orbits.

Node λ1, λ2 real, λ1λ2 > 0

Case λ1 = λ2. An improper node has solution formula

x(t) = eλ1t (c1 + tc2) ,

c1 = x(0), c2 = (A− λ1I)x(0).

An improper node is further classified as a degenerate
node (c2 6= 0) or a star node (c2 = 0).
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Assume λ1 = λ2 < 0. A degenerate node phase portrait
has all trajectories tangent at t =∞ to direction c2. A star
node phase portrait consists of trajectories x(t) = eλ1tc1,
a straight line, with limit 0 at t = ∞. Vector c1 can be
any direction. If λ1 > 0, then the same is true with t =∞
replaced by t = −∞.

Case λ1 6= λ2. A proper node is any node that is not
improper. Its solution formula is

x(t) = eλ1tc1 + eλ2tc2,

c1 =
A− λ2I

λ1 − λ2
x(0), c2 =

A− λ1I

λ2 − λ1
x(0).

A trajectory near a proper node satisfies, for some direction
v, limt→ω x′(t)/|x′(t)| = v, for either ω =∞ or ω = −∞.
Briefly, x(t) is tangent to v at t = ω. Further, to each
direction v corresponds some x(t) tangent to v.

Spiral λ1 = λ2 = a+ ib complex, a 6= 0, b > 0.

A spiral has solution formula

x(t) = eat cos(bt) c1 + eat sin(bt) c2,

c1 = x(0), c2 =
A− aI
b

x(0).

All solutions are bounded harmonic oscillations of natural
frequency b times an exponential amplitude which grows if
a > 0 and decays if a < 0. An orbit in the phase plane
spirals out if a > 0 and spirals in if a < 0.

Center λ1 = λ2 = a+ ib complex, a = 0, b > 0

A center has solution formula

x(t) = cos(bt) c1 + sin(bt) c2,

c1 = x(0), c2 =
1
b
Ax(0).

All solutions are bounded harmonic oscillations of natural
frequency b. Orbits in the phase plane are periodic closed
curves of period 2π/b which encircle the origin.

Attractor and repeller. An equilibrium point is called an attrac-
tor provided solutions starting nearby limit to the point as t → ∞. A
repeller is an equilibrium point such that solutions starting nearby limit
to the point as t → −∞. Terms like attracting node and repelling
spiral are defined analogously.
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Almost linear systems

A nonlinear planar autonomous system x′(t) = f(x(t)) is called almost
linear at equilibrium point x = x0 if

f(x) = A(x− x0) + g(x),

lim
‖x−x0‖→0

‖g(x)‖
‖x− x0‖

= 0.

The function g has the same smoothness as f . We investigate the pos-
sibility that a local phase diagram at x = x0 for the nonlinear system
x′(t) = f(x(t)) is graphically identical to the one for the linear system
y′(t) = Ay(t) at y = 0.

The results will apply to all isolated equilibria of x′(t) = f(x(t)). This
is accomplished by expanding f in a Taylor series about each equilibrium
point, which implies that the ideas are applicable to different choices of
A and g, depending upon which equilibrium point x0 was considered.

Define the Jacobian matrix of f at equilibrium point x0 by the formula

J = aug (∂1 f(x0), ∂2 f(x0)) .

Taylor’s theorem for functions of two variables says that

f(x) = J(x− x0) + g(x)

where g(x)/‖x−x0‖ → 0 as ‖x−x0‖ → 0. Therefore, for f continuously
differentiable, we may always take A = J to obtain from the almost
linear system x′(t) = f(x(t)) its linearization y′(t) = Ay(t).

Phase diagrams. For planar almost linear systems x′(t) = f(x(t)),
phase diagrams have been studied extensively, by Poincaré-Bendixson
and a long list of researchers. It is known that only a finite number of
local phase diagrams are possible near each isolated equilibrium point
of the nonlinear system, the library of figures being identical to those
possibilities for a linear system y′(t) = Ay(t). A precise statement,
without proof, appears below.

Theorem 4 (Phase diagrams of almost linear systems)
Let the planar almost linear system x′(t) = f(x(t)) be given with f(x) =
A(x − x0) + g(x) near the isolated equilibrium point x0 (an isolated root
of f(x0) = 0). Let λ1, λ2 be the roots of det(A− λI) = 0. Then:

1. If λ1 = λ2, then the equilibrium x0 of the nonlinear system x′(t) =
f(x(t)) is either a node or a spiral. The equilibrium x0 is an asymp-
totically stable attractor if λ1 < 0 and it is a repeller if λ1 > 0.
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2. If λ1 = λ2 = ib, b > 0, then the equilibrium x0 of the nonlinear
system x′(t) = f(x(t)) is either a center or a spiral. The stability of
the equilibrium x0 cannot be predicted from properties of A.

3. In all other cases, the isolated equilibrium x0 has graphically the same
phase diagram as the associated linear system y′(t) = Ay(t) at y = 0.
In particular, local phase diagrams of a saddle, spiral or node can
be graphed from the linear system. The local properties of stability,
instability and asymptotic stability at x0 are inherited by the nonlinear
system from the linear system.

Classification of equilibria. A system x′(t) = Ax(t) + g(x(t)) has
a local phase diagram determined by the linear system y′(t) = Ay(t),
except in the case when the roots λ1, λ2 of the characteristic equation
det(A − λI) = 0 are equal or purely imaginary (see Theorem 4). To
summarize:

Table 1. Equilibria classification for almost linear systems

Eigenvalues of A Nonlinear Classification
λ1 < 0 < λ2 Unstable saddle
λ1 < λ2 < 0 Stable proper node
λ1 > λ2 > 0 Unstable proper node
λ1 = λ2 < 0 Stable improper node or spiral
λ1 = λ2 > 0 Unstable improper node or spiral
λ1 = λ2 = a+ ib, a < 0, b > 0 Stable spiral
λ1 = λ2 = a+ ib, a > 0, b > 0 Unstable spiral
λ1 = λ2 = ib, b > 0 Stable or unstable, center or spiral

Nonlinear classifications of equilibria. Applied literature may
refer to an equilibrium point x0 of a nonlinear system x′(t) = f(x(t)) as
a saddle, node, center or spiral. The geometry of these classifications is
explained below.

Saddle. The term implies that locally the phase diagram looks like a
linear saddle. In nonlinear phase diagrams, the straight lines to
which orbits are asymptotic appear to be curves instead. These
curves are called separatrices, and they generally are unions of
certain orbits and equilibria.

Node. Each orbit starting near the equilibrium is expected to limit to
the equilibrium at either t = ∞ (stable) or t = −∞ (unstable),
in a fashion asymptotic to a direction v. The terminology gener-
ally applies to linearized system star points, in which case there
is an orbit asymptotic to v for every direction v. If there is only
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one direction v possible, or all orbits are asymptotic to just one
separatrix, then the equilibrium is still classified as a node.

Center. Locally, orbits are periodic solutions which enclose the equilib-
rium point. The periodic orbit plus its interior limits as a planar
region to the equilibrium point. Drawings often portray the pe-
riodic orbit as a convex figure, but this is not correct, in general,
because the periodic orbit can have any shape. In particular, the
linearized system may have phase diagram consisting of concen-
tric circles, but the nonlinear phase diagram has no such exact
geometric structure.

Spiral. To describe a nonlinear spiral, we require that an orbit start-
ing on a given ray emanating from the equilibrium point must
intersect that ray in infinitely many distinct points on (−∞,∞).
The intuitive notion of a nonlinear spiral is obtained from a lin-
ear example, e.g.,

u′(t) =

(
−1 2
−2 −1

)
u(t).

The component solutions x(t) = e−t(A cos 2t + B sin 2t), y(t) =
e−t(−A sin 2t + B cos 2t) oscillate infinity often on (−∞,∞) and
the orbit rotates around the equilibrium point with non-constant
time-varying amplitude.
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10.3 Biological Models

Studied here are predator-prey models and competition models for
two populations. Assumed as background from population biology are
the one-dimensional Malthusian model P ′ = kP and the one-dimensional
Verhulst model P ′ = (a− bP )P .

Predator-Prey Models

One species called the predator feeds on the other species called the
prey. The prey feeds on some constantly available food supply, e.g.,
rabbits eat plants and foxes eat rabbits.

Credited with the classical predator-prey model is the Italian mathe-
matician Vito Volterra (1860-1940), who worked on cyclic variations
in shark and prey-fish populations in the Adriatic sea. The following
biological assumptions apply to model a predator-prey system.

Malthusian growth The prey population grows according to the
growth equation x′(t) = ax(t), a > 0, in the
absence of predators.

Malthusian decay The predator population decays according to the
decay equation y′(t) = −by(t), b > 0, in the
absence of prey.

Chance encounters The prey decrease population at a rate −pxy,
p > 0, due to chance encounters with predators.
The predators increase population due to the
chance interactions at a rate qxy, q > 0.

The interaction terms qxy and −pxy are justified by arguing that the
frequency of chance encounters is proportional to the product xy. Bi-
ologists explain the proportionality by saying that doubling either pop-
ulation should double the frequency of chance encounters. Adding the
Malthusian rates and the chance encounter rates gives the Volterra
predator-prey system

x′(t) = (a− py(t))x(t),
y′(t) = (qx(t)− b)y(t).

(1)

The differential equations are displayed in this form in order to emphasize
that each of x(t) and y(t) satisfy a scalar first order differential equa-
tion u′(t) = r(t)u(t) in which the rate function r(t) depends on time.
For initial population sizes near zero, the two differential equations be-
have very much like the Malthusian growth model x′(t) = ax(t) and the
Malthusian decay model y′(t) = −by(t). This basic growth/decay prop-
erty allows us to identify the predator variable y (or the prey variable
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x), regardless of the order in which the differential equations are written.
As viewed from Malthus’ law u′ = ru, the prey population has growth
rate r = a− py which gets smaller as the number y of predators grows,
resulting in fewer prey. Likewise, the predator population has decay rate
r = −b + qx, which gets larger as the number x of prey grows, causing
increased predation. These are the basic ideas of Verhulst, applied to
the individual populations x and y.

Equilibria. The equilibrium points x satisfy f(x) = 0 where f is
defined by

f(x) =

(
(a− py)x
(qx− b)y)

)
, x =

(
x
y

)
.(2)

The equilibria are found to be (0, 0) and (b/q, a/p).

Linearized predator-prey system. The function f defined by (2)
has vector partial derivatives

∂xf(x) =

(
a− py
qy

)
, ∂yf(x) =

(
−px
qx− b

)
.

The Jacobian matrix J =
(
∂xf(x) ∂yf(x)

)
is given explicitly by

J =

(
a− py −px
qy qx− b

)
.(3)

The matrix J is evaluated at an equilibrium point (a root of f(x) = 0)
to obtain a 2× 2 matrix A for the linearized system x′(t) = Ax(t). The
linearized systems are:

Equilibrium (0, 0) x′(t) =

(
a 0
0 −b

)
x(t)

Equilibrium (b/q, a/p) x′(t) =

(
0 −bp/q

aq/p 0

)
x(t)

The first equilibrium (0, 0) is classified as a saddle, therefore the almost
linear system x′(t) = f(x(t)) has a saddle at the origin.

The second equilibrium (b/q, a/p) is classified as a center, therefore the
almost linear system x′(t) = f(x(t)) is either a center or a spiral. We
shall eliminate the spiral case by applying the following result, whose
proof is outlined in the exercises.

Theorem 5 (Predator-prey general solution)

Let x(t) =

(
x(t)
y(t)

)
be an orbit of the predator-prey system (1) with
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x(0) > 0 and y(0) > 0. Then for some constant C,

a ln y(t) + b lnx(t)− qx(t)− py(t) = C.(4)

Proof: Assume the equilibrium (b/q, a/p) is not a center, then it is a spiral
point and some orbit touches the line x = b/q in points (b/q, u1), (b/q, u2) with
u1 6= u2, u1 > a/p, u2 > a/p. Consider the energy function E(u) = a lnu− pu.
Due to relation (4), E(u1) = E(u2) = E0, where E0 ≡ C+ b− b ln(b/q). By the
Mean Value Theorem of calculus, (u1 − u2)dE/du = 0 at some u between u1

and u2. This is a contradiction, because dE/du = (a−pu)/u is strictly negative
for a/p < u <∞. Therefore, the equilibrium (b/q, a/p) is center.

Rabbits and foxes. A typical application of predator-prey theory
is the Volterra population model for x rabbits and y foxes given by the
system of differential equations

x′(t) = 0.004x(t)(40− y(t)),
y′(t) = 0.02 y(t)(x(t)− 60).

(5)

The equilibria of system (5) are (0, 0) and (60, 40). A phase plot for
system (5) appears in Figure 15.

60 110
x

y
160

0
20

Figure 15. Oscillating
population of rabbits and
foxes (5).

Equilibria (0, 0) and (60, 40) are
respectively a saddle and a cen-
ter. The period of oscillation is
about 17 for the largest orbit and
about 14.5 for the smallest orbit.

The linearized system at (60, 40) is

x′(t) = − 6
25
y(t),

y′(t) =
4
5
x(t).

This system implies x′′(t) + 6
25

4
5x(t) = 0, a harmonic oscillator of pe-

riod 2π/
√

24/125 ≈ 14.33934302. Therefore, the period of smaller and
smaller orbits enclosing the equilibrium (60, 40) must approach a value
that is approximately 14.339.

The fluctuations in population size x(t) are measured graphically by
the maximum and minimum values of x in the phase diagram, or more
simply, by graphing t versus x(t) in a planar graphic. To illustrate, the
orbit for x(0) = 60, y(0) = 100 is graphed in Figure 16, from which it
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is determined that the rabbit population x(t) fluctuates between 39 and
87. Similar remarks apply to foxes y(t).

x

0
39

87

24

y

Figure 16. Plot of time t
versus rabbits x(t) in (5) for
x(0) = 60, y(0) = 100.

An initial rabbit population of 60
and fox population of 100 causes
the rabbit population to fluctuate
from 39 to 87.

Competition Models

Two populations 1 and 2 feed on some constantly available food supply,
e.g., two kinds of insects feed on fallen fruit.

The following biological assumptions apply to model a two-population
competition system.

Verhulst model 1 Population 1 grows or decays according to the
logistic equation x′(t) = (a− bx(t))x(t), in the
absence of population 2.

Verhulst model 2 Population 2 grows or decays according to the
logistic equation y′(t) = (c− dy(t))y(t), in the
absence of population 1.

Chance encounters Population 1 decays at a rate −pxy, p > 0, due
to chance encounters with population 2. Popu-
lation 2 decays at a rate −qxy, q > 0, due to
chance encounters with population 1.

Adding the Verhulst rates and the chance encounter rates gives the
Volterra competition system

x′(t) = (a− bx(t)− py(t))x(t),
y′(t) = (c− dy(t)− qx(t))y(t).

(6)

The equations show that each population satisfies a time-varying first
order differential equation u′(t) = r(t)u(t) in which the rate function
r(t) depends on time. For initial population sizes near zero, the two
differential equations essentially reduce to the Malthusian growth models
x′(t) = ax(t) and y′(t) = cy(t). As viewed from Malthus’ law u′ = ru,
population 1 has growth rate r = a−bx−py which decreases if population
2 grows, resulting in a reduction of population 1. Likewise, population 2
has growth rate r = c−dy−qx, which reduces population 2 as population
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1 grows. While a, c are Malthusian growth rates, constants b, d measure
inhibition (due to lack of food or space) and constants p, q measure
competition.

Equilibria. The equilibrium points x satisfy f(x) = 0 where f is
defined by

f(x) =

(
(a− bx− py)x
(c− dy − qx)y

)
, x =

(
x
y

)
.(7)

To isolate the most important applications, the assumption will be made
of exactly four roots in population quadrant I. This is equivalent to the
condition bd− qp 6= 0 plus all equilibria have nonnegative coordinates.

Three of the four equilibria are found to be (0, 0), (a/b, 0), (0, c/d). The
last two represent the carrying capacities of the Verhulst models in the
absence of the second population. The fourth equilibrium (x0, y0) is
found as the unique root of the linear system(

b p
q d

)(
x0

y0

)
=

(
a
c

)
,

which according to Cramer’s rule is

x0 =
ad− pc
bd− qp

, y0 =
bc− qa
bd− qp

.

Linearized competition system. The function f defined by (7)
has vector partial derivatives

∂xf(x) =

(
a− 2bx− py
−qy

)
, ∂yf(x) =

(
−px

c− 2dy − qx

)
.

The Jacobian matrix J =
(
∂xf(x) ∂yf(x)

)
is given explicitly by

J(x, y) =

(
a− 2bx− py −px
−qy c− 2dy − qx

)
.(8)

The matrix J is evaluated at an equilibrium point (a root of f(x) = 0)
to obtain a 2× 2 matrix A for the linearized system x′(t) = Ax(t). The
linearized systems are:

Equilibrium (0, 0)
Unstable node or spiral

x′(t) =

(
a 0
0 c

)
x(t)

Equilibrium (a/b, 0)
Saddle or nodal sink

x′(t) =

(
−a −ap/b
0 c− qa/b

)
x(t)
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Equilibrium (0, c/d)
Saddle or nodal sink

x′(t) =

(
a− cp/d 0
−qc/d −c

)
x(t)

Equilibrium (x0, y0)
Saddle or nodal sink

x′(t) =

(
−bx0 −px0

−qy0 −dy0

)
x(t)

Equilibria (a/b, 0) and (0, c/d) are either both saddles or both nodal
sinks, accordingly as bd− qp > 0 or bd− qp < 0, because of the require-
ment that a, b, c, d, p, q, x0, y0 be positive.

The analysis of equilibrium (x0, y0) is made by computing the eigenvalues
of the linearized system to be

1
2

(
−(bx0 + dy0)±

√
D
)
, D = (bx0 − dy0)2 + 4pqx0y0.

Because D > 0, the equilibrium is a saddle when the roots have opposite
sign, and it is a nodal sink when both roots are negative. The saddle case
is D > (bx0 + dy0)2 or equivalently 4x0y0(pq− bd) > 0, which reduces to
bd− qp < 0. In summary:

If bd− qp > 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are
respectively a saddle, saddle, nodal sink.

If bd− qp < 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are
respectively a nodal sink, nodal sink, saddle.

Biological meaning of bd−qp negative or positive. The quan-
tities bd and qp are measures of inhibition and competition.

Survival-extinction The inequality bd− qp < 0 means that competi-
tion qp is large compared with inhibition bd. The
equilibrium point (x0, y0) is unstable in this case,
which biologically means that the two species
cannot coexist: one species survives and the
other becomes extinct.

Co-existence The inequality bd − qp > 0 means that compe-
tition qp is small compared with inhibition bd.
The equilibrium point (x0, y0) is asymptotically
stable in this case, which biologically means the
two species co-exist.

Survival of One Species

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

(9)
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We apply the general competition theory with a = 24, b = 1, p = 2,
c = 30, d = 1, q = 2. The equilibrium points are (0, 0), (24, 0), (0, 30),
(12, 6).

24120

30

6

0

y

x

Figure 17. Survival of one
species.

The equilibria are (0, 0), (0, 30),
(24, 0) and (12, 6). They are clas-
sified as node, node, node, sad-
dle, respectively. The population
with initial advantage survives,
while the other dies out.

Co-existence

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

(10)

y

x

0

15
12

126
0

Figure 18. Coexistence.

The equilibria are (0, 0), (0, 15),
(12, 0) and (6, 12). They are
classified as node, saddle, sad-
dle, node, respectively. A solu-
tion with x(0) > 0, y(0) > 0
limits to (6, 12) at t =∞.

Alligators, Doomsday and Extinction

Let us assume a competition-type model (6) in which the Verhulst dy-
namics has doomsday-extinction type. Thus, we take the signs of a, b,
c, d in (6) to be negative, but p, q are still positive. The populations
x(t) and y(t) are unsophisticated in the sense that each population in
the absence of the other is subject to only the possibilities of doomsday
or extinction.

It can be verified for this general setting, although we shall not attempt
to do so here, that the population quadrant x(0) > 0, y(0) > 0 is sepa-
rated into two regions I and II, whose common boundary is a separatrix
consisting of three equilibria and two orbits. An orbit starting in region
I will have (a) x(∞) = 0, y(∞) = ∞, or (b) x(∞) = ∞, y(∞) = 0, or
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(c) x(∞) = ∞, y(∞) = ∞. Orbits starting in region II will satisfy (d)
x(∞) = 0, y(∞) = 0. The biological conclusion is that either population
explosion (doomsday) or extinction occurs for each population.

A typical instance is:

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

(11)

4

x

y

0
60

2

8

Figure 19. Phase plot of
(11). Population explosion
or extinction.

The equilibria are (0, 0), (0, 8),
(4, 0) and (6, 2). They are classi-
fied as node, saddle, saddle, spi-
ral, respectively. The spiral at
(6, 2) (solid square) is an unsta-
ble source.
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10.4 Mechanical Models

Nonlinear Spring-Mass System

The classical linear undamped spring-mass system is modeled by the
equation mx′′(t) + kx(t) = 0. This equation describes the excursion x(t)
from equilibrium x = 0 of a mass m attached to a spring of Hooke’s
constant k, with no damping and no external forces.

In the nonlinear theory, the Hooke’s force term −kx is replaced by a
restoring force F (x) which satisfies these four requirements:

Equilibrium 0. The equation F (0) = 0 is assumed, which gives x = 0
the status of a rest position.

Oddness. The equation F (−x) = −F (x) is assumed, which says that
the force F depends only upon the magnitude of the excursion
from equilibrium, and not upon its direction. Then force F acts to
restore the mass to its equilibrium position, like a Hooke’s force
x→ kx.

Zero damping. The damping effects always present in a real physical
system are ignored. In linear approximations, it would be usual to
assume a viscous damping effect −cx′(t); from this viewpoint we
assume c = 0.

Zero external force. There is no external force acting on the system.
In short, only two forces act on the mass, (1) Newton’s second law
and (2) restoring force F .

The competition method applies to model the nonlinear spring-mass sys-
tem via the two competing forces mx′′(t) and F (x(t)). The dynamical
equation:

mx′′(t) + F (x(t)) = 0.(1)

Soft and Hard Springs

A restoring force F modeled upon Hooke’s law is given by the equation
F (x) = kx. With this force, the nonlinear spring-mass equation (1)
becomes the undamped linear spring-mass system

mx′′(t) + kx(t) = 0.(2)

The linear equation can be thought to originate by replacing the actual
spring force F by the first nonzero term of its Taylor series

F (x) = F (0) + F ′(0)x+ F ′′(0)
x2

2!
+ · · · .
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The assumptions F (−x) = −F (x) and F (0) = 0 imply that F (x) is a
function of the form F (x) = xG(x2), hence all even terms in the Taylor
series of F are zero.

Linear approximations to the force F drop the quadratic terms and
higher from the Taylor series. More accurate nonlinear approximations
are obtained by retaining extra Taylor series terms.

A restoring force F is called hard or soft provided it is given by a
truncated Taylor series as follows.

Hard spring F (x) = kx+ βx3, β > 0.

Soft spring F (x) = kx− βx3, β > 0.

For small excursions from equilibrium x = 0, a hard or soft spring
force has magnitude approximately the same as the linear Hooke’s force
F (x) = kx.

Energy Conservation. Each solution x(t) of the nonlinear spring-
mass equation mx′′(t) + F (x(t)) = 0 satisfies on its domain of existence
the conservation law

m

2
(x′(t))2 +

∫ x(t)

x(0)
F (u) du = C, C ≡ m

2
(x′(0))2.(3)

To prove the law, multiply the nonlinear differential equation by x′(t) to
obtain mx′′(t)x′(t) + F (x(t))x′(t) = 0, then apply quadrature to obtain
(3).

Kinetic and Potential Energy. Using v = x′(t), the term mv2/2
in (3) is called the kinetic energy (KE) and the term

∫ x
x0
F (u)du is

called the potential energy (PE). Equation (3) says that KE+PE =
C or that energy is constant along trajectories.

The conservation laws for the soft and hard nonlinear spring-mass sys-
tems, using position-velocity notation x = x(t) and y = x′(t), are there-
fore given by the equations

my2 + kx2 +
1
2
βx4 = C1, C1 = constant > 0,(4)

my2 + kx2 − 1
2
βx4 = C2, C2 = constant.(5)

Phase Plane and Scenes. Nonlinear behavior is commonly graphed
in the phase plane, in which x = x(t) and y = x′(t) are the position and
velocity of the mechanical system. The plots of t versus x(t) or x′(t) are
called scenes; these plots are invaluable for verifying periodic behavior
and stability properties.
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Hard spring

The only equilibrium for a hard spring x′ = y, my′ = −kx − βx3 is
the origin x = y = 0. Conservation law (4) describes a closed curve in
the phase plane, which implies that trajectories are periodic orbits that
encircle the equilibrium point (0, 0). The classification of center applies.
See Figures 20 and 21.

y

−2

3
2
1

2
x

Figure 20. Hard spring
x′′(t) + x(t) + 2x3(t) = 0.
Phase portrait for x′ = y,
y′ = −2x3 − x on |x| ≤ 2, |y| ≤ 3.5.
Initial data: x(0) = 0 and y(0) = 1/2,
1, 2, 3.

−1

1

0 6
t

velocity y
position x

Figure 21. Hard spring
x′′(t) + x(t) + 2x3(t) = 0.
Coordinate scenes for x′ = y,
y′ = −2x3 − x, x(0) = 0, y(0) = 1.

More intuition about the orbits can be obtained by finding the energy
C1 for each orbit. The value of C1 decreases to zero as orbits close
down upon the origin. Otherwise stated, the xyz-plot with z = C1 has
a minimum at the origin, which physically means that the equilibrium
state x = y = 0 minimizes the energy. See Figure 22.

(0, 0, 0)

Figure 22. Hard spring energy
minimization.
Plot for x′′(t) + x(t) + 2x3(t) = 0,
using z = y2 + x2 + x4 on |x| ≤ 1/2,
|y| ≤ 1. The minimum is realized at
x = y = 0.

Soft Spring

There are three equilibria for a soft spring

x′ = y,
my′ = −kx+ βx3.

They are (−α, 0), (0, 0), (α, 0), where α =
√
k/β. If (x(0), y(0)) is given

not at these points, then the mass undergoes motion. In short, the
stationary mass positions are at the equilibria.
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Linearization at the equilibria reveals part of the phase portrait. The
linearized system at the origin is the system x′ = y, my′ = −kx, equiv-
alent to the equation mx′′ + kx = 0. It has a center at the origin. This
implies the origin for the soft spring is either a center or a spiral. The
other two equilibria have linearized systems equivalent to the equation
mx′′ − 2kx = 0; they are saddles.

The phase plot in Figure 23 shows separatrices, which are unions of
solution curves and equilibrium points. Orbits in the phase plane, on
either side of a separatrix, have physically different behavior. Shown is
a center behavior interior to the union of the separatrices, while outside
all orbits are unbounded.

y

x

Figure 23. Soft spring
x′′(t) + x(t)− 2x3(t) = 0.
A phase portrait for x′ = y,
y′ = 2x3 − x on |x| ≤ 1.2, |y| ≤ 1.2.
The 8 separatrices are the 6 bold
curves plus the two equilibria
(
√

0.5, 0), (−
√

0.5, 0).
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Figure 24. Soft spring
x′′(t) + x(t)− 2x3(t) = 0.
Coordinate scenes for x′ = y,
y′ = 2x3 − x, x(0) = 0, y(0) = 4.

Nonlinear Pendulum

Consider a nonlinear undamped pendulum of length L making angle θ(t)
with the gravity vector. The nonlinear pendulum equation is given
by

d2θ(t)
dt2

+
g

L
sin(θ(t)) = 0(6)

and its linearization at θ = 0, called the linearized pendulum equa-
tion, is

d2θ(t)
dt2

+
g

L
θ(t) = 0.(7)

The linearized equation is valid only for small values of θ(t), because of
the assumption sin θ ≈ θ used to obtain (7) from (6).

Damped Pendulum

Physical pendulums are subject to friction forces, which we shall as-
sume proportional to the velocity of the pendulum. The corresponding
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model which includes frictional forces is called the damped pendulum
equation:

d2θ(t)
dt2

+ c
dθ

dt
+
g

L
sin(θ(t)) = 0.(8)

It can be written as a first order system by setting x(t) = θ(t) and
y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g
L

sin(x(t))− cy(t).
(9)

Undamped Pendulum

The position-velocity differential equations for the undamped pendulum
are obtained by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g
L

sin(x(t)).
(10)

Equilibrium points of nonlinear system (10) are at y = 0, x = nπ, n =
0,±1,±2, . . . with corresponding linearized system (see the exercises)

x′(t) = y(t),

y′(t) = − g
L

cos(nπ)x(t).
(11)

The characteristic equation of linear system (11) is r2 − g/L(−1)n = 0,
because cos(nπ) = (−1)n. The roots have different character depending
on whether or not n is odd or even.

Even n = 2m. Then r2 + g/L = 0 and the linearized system (11) is a
center. The orbits of (11) are concentric circles surrounding x = nπ,
y = 0.

Figure 25. Linearized pendulum
at x = 2mπ, y = 0.
Orbits are concentric circles.

Odd n = 2m+ 1. Then r2 − g/L = 0 and the linearized system (11) is
a saddle. The orbits of (11) are hyperbolas with center x = nπ, y = 0.
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Figure 26. Linearized pendulum
at x = (2m+ 1)π, y = 0.
Orbits are hyperbolas.

Drawing the Nonlinear Phase Diagram. The idea of the plot is to
copy the linearized diagram onto the local region centered at the equi-
librium point, when possible. The copying is guaranteed to be correct
for the saddle case, but a center must be copied either as a spiral or a
center. We must do extra analysis to determine the figure to copy in the
case of the center.

The orbits trace an xy-curve given by integrating the separable equation

dy

dx
=
−g
L

sinx
y

.

Then the conservation law for the mechanical system is

1
2
y2 +

g

L
(1− cosx) = E

where E is a constant of integration. This equation is arranged so that
E is the sum of the kinetic energy y2/2 and the potential energy g(1 −
cosx)/L, therefore E is the total mechanical energy. Using the double
angle identity cos 2φ = 1 − 2 sin2 φ the conservation law can be written
in the shorter form

y2 +
4g
L

sin2(x/2) = 2E

When the energy E is small, E < 2g/L, then the pendulum never reaches
the vertical position and it undergoes sustained periodic oscillation: the
stable equilibria (0, 2kπ) have a local center structure.

When the energy E is large, E > 2g/L, then the pendulum reaches
the vertical position and goes over the top repeatedly, represented by a
saddle structure. The statement is verified from the two explicit solutions
y = ±

√
2E − 4g sin2(x/2)/L.

The energy equation E = 2g/L produces the separatrices, which consist
of equilibrium points plus solution curves which limit to the equilibria
as t→ ±∞.
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Figure 27. Nonlinear pendulum
phase diagram.
Centers at (−2π, 0), (0, 0), (2π, 0).
Saddles at (−3π, 0), (−pi, 0), (π, 0),
(3π, 0). Separatrices are generated
from equilibria and G(x, y) = 2E,
with E = 2g/L and g/L = 10.


