Stability of Dynamical systems

- Stability
- Isolated equilibria
- Classification of Isolated Equilibria
- Attractor and Repeller
- Almost linear systems
- Jacobian Matrix

Stability

Consider an autonomous system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ with \vec{f} continuously differentiable in a region D in the plane.

Stable equilibrium. An equilibrium point $\vec{\mathbf{u}}_0$ in D is said to be **stable** provided for each $\epsilon > 0$ there corresponds $\delta > 0$ such that (a) and (b) hold:

- (a) Given $\vec{\mathbf{u}}(0)$ in D with $\|\vec{\mathbf{u}}(0) \vec{\mathbf{u}}_0\| < \delta$, then $\vec{\mathbf{u}}(t)$ exists on $0 \le t < \infty$.
- (b) Inequality $\|\vec{\mathbf{u}}(t) \vec{\mathbf{u}}_0\| < \epsilon$ holds for $0 \le t < \infty$.

Unstable equilibrium. The equilibrium point $\vec{\mathbf{u}}_0$ is called unstable provided it is **not** stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point $\vec{\mathbf{u}}_0$ is said to be asymptotically stable provided (a) and (b) hold (it is stable), and additionally

(c)
$$\lim_{t\to\infty} \|\vec{\mathbf{u}}(t) - \vec{\mathbf{u}}_0\| = 0$$
 for $\|\vec{\mathbf{u}}(0) - \vec{\mathbf{u}}_0\| < \delta$.

Isolated equilibria

An autonomous system is said to have an **isolated equilibrium** at $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ provided $\vec{\mathbf{u}}_0$ is the only constant solution of the system in $|\vec{\mathbf{u}} - \vec{\mathbf{u}}_0| < r$, for r > 0 sufficiently small.

Theorem 1 (Isolated Equilibrium)

The following are equivalent for a constant planar system $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$:

- 1. The system has an isolated equilibrium at $\vec{u} = \vec{0}$.
- 2. $\det(A) \neq 0$.
- 3. The roots λ_1, λ_2 of $\det(A \lambda I) = 0$ satisfy $\lambda_1 \lambda_2 \neq 0$.

Proof: The expansion $\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$ shows that $\det(A) = \lambda_1\lambda_2$. Hence $2 \equiv 3$. We prove now $1 \equiv 2$. If $\det(A) = 0$, then $A\vec{u} = \vec{0}$ has infinitely many solutions \vec{u} on a line through $\vec{0}$, therefore $\vec{u} = \vec{0}$ is not an isolated equilibrium. If $\det(A) \neq 0$, then $A\vec{u} = \vec{0}$ has exactly one solution $\vec{u} = \vec{0}$, so the system has an isolated equilibrium at $\vec{u} = \vec{0}$.

Classification of Isolated Equilibria

For linear equations

$$\vec{\mathrm{u}}'(t) = A\vec{\mathrm{u}}(t),$$

we explain the phase portrait classifications

saddle, node, spiral, center

near an isolated equilibrium point $\vec{u} = \vec{0}$, and how to detect these classifications, when they occur.

Symbols λ_1, λ_2 are the roots of $\det(A - \lambda I) = 0$.

Atoms corresponding to roots λ_1 , λ_2 happen to classify the phase portrait as well as its stability. A **shortcut** will be explained to determine a classification, *based only on the atoms*.

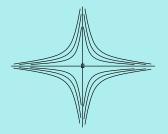


Figure 1. Saddle

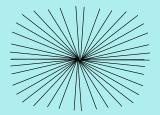


Figure 3. Proper node

Figure 5. Center

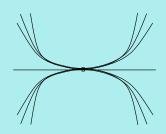


Figure 2. Improper node

Figure 4. Spiral

Saddle λ_1, λ_2 real, $\lambda_1\lambda_2 < 0$

A **saddle** has solution formula

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{\lambda_1 t} ec{\mathrm{c}}_1 + e^{\lambda_2 t} ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= rac{A - \lambda_2 I}{\lambda_1 - \lambda_2} \, ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= rac{A - \lambda_1 I}{\lambda_2 - \lambda_1} \, ec{\mathrm{u}}(0). \end{aligned}$$

The phase portrait shows two lines through the origin which are tangents at $t=\pm\infty$ for all orbits.

A saddle is **unstable** at $t=\infty$ and $t=-\infty$, due to the limits of the atoms e^{r_1t} , e^{r_2t} at $t=\pm\infty$.

Node λ_1, λ_2 real, $\lambda_1\lambda_2 > 0$

Case $\lambda_1 = \lambda_2$. An improper node has solution formula

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{\lambda_1 t} \, ec{\mathrm{c}}_1 + t e^{\lambda_1 t} \, ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= (A - \lambda_1 I) ec{\mathrm{u}}(0). \end{aligned}$$

An improper node is further classified as a **degenerate node** ($\vec{c}_2 \neq \vec{0}$) or a **star node** ($\vec{c}_2 = \vec{0}$). Discussed below is **subcase** $\lambda_1 = \lambda_2 < 0$. For **subcase** $\lambda_1 = \lambda_2 > 0$, replace ∞ by $-\infty$.

degenerate node

A phase portrait has all trajectories tangent at $t = \infty$ to direction \vec{c}_2 .

star node

A phase portrait consists of trajectories $\vec{\mathbf{u}}(t)=e^{\lambda_1t}\vec{\mathbf{c}}_1$, a straight line, with limit $\vec{\mathbf{0}}$ at $t=\infty$. Vector $\vec{\mathbf{c}}_1$ can be any direction.

Node λ_1, λ_2 real, $\lambda_1\lambda_2 > 0$

Case $\lambda_1 \neq \lambda_2$. A **proper node** is any node that is not improper. Its solution formula is

$$egin{aligned} ec{\mathrm{u}}(t) &= e^{\lambda_1 t} ec{\mathrm{c}}_1 + e^{\lambda_2 t} ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= rac{A - \lambda_2 I}{\lambda_1 - \lambda_2} \, ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= rac{A - \lambda_1 I}{\lambda_2 - \lambda_1} \, ec{\mathrm{u}}(0). \end{aligned}$$

- A trajectory near a proper node satisfies, for some direction $\vec{\mathbf{v}}$, $\lim_{t\to\omega}\vec{\mathbf{u}}'(t)/|\vec{\mathbf{u}}'(t)|=\vec{\mathbf{v}}$, for either $\omega=\infty$ or $\omega=-\infty$. Briefly, $\vec{\mathbf{u}}(t)$ is tangent to $\vec{\mathbf{v}}$ at $t=\omega$.
- ullet To each direction $\vec{\mathbf{v}}$ corresponds some $\vec{\mathbf{u}}(t)$ tangent to $\vec{\mathbf{v}}$.

Spiral

$$\lambda_1=\overline{\lambda}_2=a+ib$$
 complex, $a
eq 0,\,b>0.$

A **spiral** has solution formula

$$egin{align} ec{\mathrm{u}}(t) &= e^{at}\cos(bt)\,ec{\mathrm{c}}_1 + e^{at}\sin(bt)\,ec{\mathrm{c}}_2, \ ec{\mathrm{c}}_1 &= ec{\mathrm{u}}(0), \quad ec{\mathrm{c}}_2 &= rac{A-aI}{b}\,ec{\mathrm{u}}(0). \end{aligned}$$

All solutions are bounded harmonic oscillations of natural frequency b times an exponential amplitude which grows if a>0 and decays if a<0. An orbit in the phase plane **spirals out** if a>0 and **spirals in** if a<0.

Center

$$\lambda_1=\overline{\lambda}_2=a+ib$$
 complex, $a=0,b>0$

A center has solution formula

$$ec{\mathrm{u}}(t) = \cos(bt)\,ec{\mathrm{c}}_1 + \sin(bt)\,ec{\mathrm{c}}_2,$$

$$ec{ ext{c}}_1 = ec{ ext{u}}(0), \quad ec{ ext{c}}_2 = rac{1}{b} A ec{ ext{u}}(0).$$

All solutions are bounded harmonic oscillations of natural frequency b. Orbits in the phase plane are periodic closed curves of period $2\pi/b$ which encircle the origin.

Attractor and Repeller

- An equilibrium point is called an **attractor** provided solutions starting nearby limit to the point as $t \to \infty$.
- A **repeller** is an equilibrium point such that solutions starting nearby limit to the point as $t \to -\infty$.
- Terms like attracting node and repelling spiral are defined analogously.

Almost linear systems

A nonlinear planar autonomous system $\vec{\mathbf{u}}'(t) = \vec{\mathbf{f}}(\vec{\mathbf{u}}(t))$ is called **almost linear** at equilibrium point $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ if there is a 2×2 matrix A and a vector function $\vec{\mathbf{g}}$ such that

$$egin{aligned} ec{ ext{f}}(ec{ ext{u}}) &= A(ec{ ext{u}} - ec{ ext{u}}_0) + ec{ ext{g}}(ec{ ext{u}}), \ \lim_{\|ec{ ext{u}} - ec{ ext{u}}_0\|
ightarrow 0} rac{\|ec{ ext{g}}(ec{ ext{u}})\|}{\|ec{ ext{u}} - ec{ ext{u}}_0\|} &= 0. \end{aligned}$$

The function $\vec{\mathbf{g}}$ has the same smoothness as $\vec{\mathbf{f}}$.

We investigate the possibility that a local phase diagram at $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ for the nonlinear system $\vec{\mathbf{u}}'(t) = \vec{\mathbf{f}}(\vec{\mathbf{u}}(t))$ is graphically identical to the one for the linear system $\vec{\mathbf{y}}'(t) = A\vec{\mathbf{y}}(t)$ at $\vec{\mathbf{y}} = 0$.

Jacobian Matrix

Almost linear system results will apply to **all isolated equilibria** of $\vec{\mathbf{u}}'(t) = \vec{\mathbf{f}}(\vec{\mathbf{u}}(t))$. This is accomplished by expanding f in a Taylor series about each equilibrium point, which implies that the ideas are applicable to different choices of A and g, depending upon which equilibrium point $\vec{\mathbf{u}}_0$ was considered.

Define the **Jacobian matrix** of \vec{f} at equilibrium point \vec{u}_0 by the formula

$$J = \mathrm{aug}\left(\partial_1\, ec{\mathrm{f}}(ec{\mathrm{u}}_0), \partial_2\, ec{\mathrm{f}}(ec{\mathrm{u}}_0)
ight).$$

Taylor's theorem for functions of two variables says that

$$ec{\mathrm{f}}(ec{\mathrm{u}}) = J(ec{\mathrm{u}} - ec{\mathrm{u}}_0) + ec{\mathrm{g}}(ec{\mathrm{u}})$$

where $\vec{\mathbf{g}}(\vec{\mathbf{u}})/\|\vec{\mathbf{u}}-\vec{\mathbf{u}}_0\| \to 0$ as $\|\vec{\mathbf{u}}-\vec{\mathbf{u}}_0\| \to 0$. Therefore, for $\vec{\mathbf{f}}$ continuously differentiable, we may always take A=J to obtain from the almost linear system $\vec{\mathbf{u}}'(t)=\vec{\mathbf{f}}(\vec{\mathbf{u}}(t))$ its **linearization** $y'(t)=A\vec{\mathbf{y}}(t)$.