The Undetermined Coefficients
Trial Solution Method

• Definition of Solution Atom
• Undetermined Coefficients Trial Solution Method
• Symbols
• Superposition
• The Trial Solution with Fewest Atoms
• Two Rules
 – Rule I
 – Rule II
• Illustrations
Definition of Solution Atom

A solution atom of a linear constant-coefficient homogeneous differential equation is briefly called an **atom**. The set of atoms is generated from base atoms and powers of x.

A **base atom** is one of the terms $1, \cos bx, \sin bx, e^{ax}, e^{ax} \cos bx, e^{ax} \sin bx$.

An **atom** equals x^n times a base atom, for $n = 0, 1, 2, 3 \ldots$.

Examples.

The following are atoms: $e^{2x}, e^{e^2x}, xe^{-\pi x}, e^{0x}$ or $1, x, x^2, \cos x, \cos \pi x, e^{-x} \sin 2x, x^6 \sin 100x, x^2e^{-5x}, x^5e^{-5x} \cos 5x, 2^x$ [equals e^{ax} with $a = \ln 2$], any power x^n with integer $n \geq 0$.

The following are not atoms: $2, x^{-1}, \ln |x|, e^{x^2}, \tan x, \sinh x, \sec x, \csc x, \sin^2 x, \sin(x^2), e^x \cos(2x + 2), \cot x, \frac{x}{1+x}$.
Step 1. Find a trial solution y by Rule I.

Rule I. Assume the right side $f(x)$ of the differential equation is a linear combination of atoms. Make a list of all distinct atoms that appear in the derivatives $f(x), f'(x), f''(x), \ldots$. Multiply these k atoms by undetermined coefficients d_1, \ldots, d_k, then add to define a trial solution y.

Warning: Rule I can Fail. It fails exactly when one of the atoms is a solution of the homogeneous differential equation. Do Rule II infra first, in case of failure of Rule I.

Step 2. Substitute trial solution y into the differential equation. The resulting equation is a competition between two linear combinations of the k atoms in the list.

Step 3. Linear independence of atoms implies matching of coefficients of atoms left and right. Write out linear algebraic equations for unknowns d_1, d_2, \ldots, d_k. Solve the equations.

Step 4. The trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p.
Rule I Failure

Example. The differential equation $y'' = x + e^x$ has by Rule I a trial solution $y = d_1(1) + d_2(x) + d_3(e^x)$ obtained from the list of $k = 3$ atoms $1, x, e^x$. The trial solution fails to work, because upon substitution of y into the differential equation the resulting equation is

$$d_1(1)'' + d_2(x)'' + d_3(e^x)'' = 0(1) + 1(x) + 1(e^x).$$

This equation cannot be satisfied by choosing values of d_1, d_2, d_3, because it reads

$$x + (1 - d_3)e^x = 0,$$

implying that x, e^x are dependent, a violation of the Independence of Atoms Theorem.

The actual trouble is a deeper problem. The equations $(1)'' = 0$ and $(x)'' = 0$ imply that 1 and x are solutions of the homogeneous differential equation $y'' = 0$. These equations cause constants d_1, d_2 to be completely absent from the system of equations. The constants d_1, d_2, d_3 must be uniquely determined. A variable that is absent in a linear system is a free variable, causing non-uniqueness, and this is the root of the problem.
Symbols

The symbols c_1, c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation. For example, the homogeneous equation $y'' + y = 0$ has general solution $y = c_1 \cos x + c_2 \sin x$.

Symbols d_1, d_2, d_3, \ldots are reserved for use in the trial solution y of the non-homogeneous equation. For example, the equation $y'' + y = x + e^x$ has by Rule I trial solution $y = d_1(1) + d_2(x) + d_3(e^x)$.

Abbreviations: $c =$ constant, $d =$ determined.
Superposition

The relation \(y = y_h + y_p \) suggests solving \(a y'' + b y' + c y = f(x) \) in two stages:

(a) Find \(y_h \) as a linear combination of atoms computed by applying Euler’s theorem to factors of the characteristic polynomial \(ar^2 + br + c \).

(b) Apply the **undetermined coefficients trial solution method** to find \(y_p \).

- We expect to find two arbitrary constants \(c_1, c_2 \) in the solution \(y_h \), but in contrast, **no arbitrary constants** appear in \(y_p \).
- Calling \(d_1, d_2, d_3, \ldots \) undetermined coefficients is misleading, because in fact they are eventually determined.
The Trial Solution with Fewest Atoms

Undetermined coefficient theory computes a **shortest possible trial solution**, a solution with **fewest atoms**.

Using the fewest atoms minimizes the size of the linear algebra problem for the constants \(d_1, \ldots, d_k\).

Example. \(y'' + y = x^2\)

The atom list for \(f(x) = x^2\) is \(1, x, x^2\). Rule I computes a shortest trial solution \(y = d_1 + d_2 x + d_3 x^2\). The linear algebra problem is \(3 \times 3\), and no smaller system of equations can be found.
The Rules for Undetermined Coefficients

Rule I. Assume the right side $f(x)$ of the differential equation is a linear combination of atoms. Make a list of all distinct atoms that appear in the derivatives $f(x), f'(x), f''(x), \ldots$. Multiply these k atoms by undetermined coefficients d_1, \ldots, d_k, then add to define a trial solution y.

This rule **FAILS** if one or more of the k atoms is a solution of the homogeneous differential equation.

Rule II. If Rule I **FAILS**, then break the k atoms into groups with the same **base atom**. Cycle through the groups, replacing atoms as follows. If the first atom in the group is a solution of the homogeneous differential equation, then multiply all atoms in the group by factor x. Repeat until the first atom is not a solution of the homogeneous differential equation. Multiply the constructed k atoms by symbols d_1, \ldots, d_k and add to define trial solution y.
Assume the constant-coefficient differential equation has order 2 and the trial solution from Rule I contains 4 groups of 7 atoms

<table>
<thead>
<tr>
<th>Group</th>
<th>Atoms</th>
<th>Base Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e^{2x}, xe^{2x}, x^2e^{2x}, x^3e^{ex}</td>
<td>e^{2x}</td>
</tr>
<tr>
<td>2</td>
<td>$\cos x$</td>
<td>$\cos x$</td>
</tr>
<tr>
<td>3</td>
<td>$\sin x$</td>
<td>$\sin x$</td>
</tr>
<tr>
<td>4</td>
<td>e^x</td>
<td>e^x</td>
</tr>
</tbody>
</table>
Example 1

Assume the characteristic equation of the second order homogeneous differential equation is

\[(r - 1)(r - 3) = 0.\]

Then \(e^{2x}\), \(\cos x\), \(\sin x\) are not solutions of the homogeneous equation, but \(e^x\) and \(e^{3x}\) are solutions.

Rule I fails because the Group 4 atom \(e^x\) is a solution of the homogeneous equation. The other groups do not contain solutions of the homogeneous differential equation.

Rule II applies to give one new group and three unchanged groups. The trial solution \(y\) is a linear combination of the 7 atoms.

<table>
<thead>
<tr>
<th>Group</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e^{2x}), (xe^{2x}), (x^2e^{2x}), (x^3e^{ex})</td>
</tr>
<tr>
<td>2</td>
<td>(\cos x)</td>
</tr>
<tr>
<td>3</td>
<td>(\sin x)</td>
</tr>
<tr>
<td>New 4</td>
<td>(xe^x)</td>
</tr>
</tbody>
</table>

Details. Atom \(xe^x\) is a solution of the homogeneous equation if and only if 1 is a double root of the characteristic equation; it isn’t, which stops the multiplication by \(x\) in Group 4.
Example 2

Assume the characteristic equation of the second order homogeneous differential equation is

$$(r - 1)(r - 2) = 0.$$

Then e^x, e^{2x} are solutions of the homogeneous equation, but $\cos x$, $\sin x$ are not solutions.

Rule I fails because the Group 1 atom e^{2x} is a solution of the homogeneous equation. **Rule II applies** to give two new groups and two unchanged groups. The trial solution y is a linear combination of the 7 atoms.

<table>
<thead>
<tr>
<th>Group</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>New 1</td>
<td>xe^{2x}, x^2e^{2x}, x^3e^{2x}, x^4e^{ex}</td>
</tr>
<tr>
<td>2</td>
<td>$\cos x$</td>
</tr>
<tr>
<td>3</td>
<td>$\sin x$</td>
</tr>
<tr>
<td>New 4</td>
<td>xe^x</td>
</tr>
</tbody>
</table>

Details. Atom xe^{2x} is a solution of the homogeneous equation if and only if 2 is a double root of the characteristic equation; it isn’t, which stops the multiplication by x in Group 1.

Atom xe^x is a solution of the homogeneous equation if and only if 1 is a double root of the characteristic equation; it isn’t, which stops the multiplication by x in Group 4.