The Corrected Trial Solution in the Method of Undetermined Coefficients

- Definition of Related Atoms
- The Basic Trial Solution Method
- Symbols
- Superposition
- The Trial Solution with Fewest Atoms
- Two Correction Rules
 - Correction Rule I
 - Correction rule II
- Illustrations
- Observations
- A Shortcut for Correction Rule II
Definition of Related Atoms

A base atom is one of the terms $1, \cos bx, \sin bx, e^{ax}, e^{ax} \cos bx, e^{ax} \sin bx$. An atom equals x^n times a base atom, for $n = 0, 1, 2, 3, \ldots$.

Atoms A and B are related if and only if their successive derivatives $A, A', A'', \ldots, B, B', B'', \ldots$ share a common atom.

Then x^3 is related to x and x^{101}, while x is unrelated to e^x, xe^x and $x \sin x$. Atoms $x \sin x$ and $x^3 \cos x$ are related, but the atoms $\cos 2x$ and $\sin x$ are unrelated.

An easy way to detect related atoms:

Atom A is related to atom B if and only if their base atoms are identical or else they would become identical by changing a sine to a cosine.
The Basic Trial Solution Method

The method is outlined here for an \(n \)th order linear differential equation.

Undetermined Coefficients Trial Solution Method

Step 1. Let \(g(x) = x^n f(x) \), where \(n \) is the order of the differential equation.

Extract all distinct atoms that appear in the derivatives \(g(x), g'(x), g''(x), \ldots \), then collect the distinct atoms so found into a list of \(k \) atoms. Multiply these atoms by **undetermined coefficients** \(d_1, \ldots, d_k \), then add to define a **trial solution** \(y \).

Step 2. Substitute \(y \) into the differential equation.

Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for unknowns \(d_1, d_2, \ldots, d_k \). Solve the equations. Any variables not appearing are set to zero.

Step 4. The trial solution \(y \) with evaluated coefficients \(d_1, d_2, \ldots, d_k \) becomes the particular solution \(y_p \).
Symbols

The symbols c_1, c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation.

Symbols d_1, d_2, d_3, \ldots are reserved for use in the trial solution y of the non-homogeneous equation. Abbreviations: $c =$ constant, $d =$ determined.
Superposition

The relation \(y = y_h + y_p \) suggests solving \(ay'' + by' + cy = f(x) \) in two stages:

(a) Find \(y_h \) as a linear combination of atoms computed by applying Euler’s theorem to factors of the characteristic polynomial \(ar^2 + br + c \).

(b) Apply the **basic trial solution method** to find \(y_p \).

- We expect to find two arbitrary constants \(c_1, c_2 \) in the solution \(y_h \), but in contrast, no arbitrary constants appear in \(y_p \).
- Calling \(d_1, d_2, d_3, \ldots \) undetermined coefficients is misleading, because in fact they are eventually determined.
The Trial Solution with Fewest Atoms

Undetermined coefficient theory computes a trial solution with fewest atoms, thereby eliminating superfluous symbols, which effects a reduction in the size of the algebra problem. In the case of the example $y'' + y = x^2$, the theory computes a trial solution $y = d_1 + d_2x + d_3x^2$, reducing the number of symbols from 5 to 3.

In a general equation $ay'' + by' + cy = f(x)$, the atoms in the trial solution y are the atoms that appear in $g(x) = x^2f(x)$ plus all lower-power related atoms. Equivalently, the atoms are those extracted from the successive derivatives $g(x)$, $g'(x)$, $g''(x)$, …. For example, if $f(x) = x^2$, then $g(x) = x^2(x^2) = x^4$ and the list of derivatives is x^4, $4x^3$, $12x^2$, $24x$, 24. Strip coefficients to identify the list of related atoms 1, x, x^2, x^3, x^4. Alternatively, begin with the atoms in $g(x)$, namely x^4, and append all lower powered related atoms. Briefly, atom x^4 causes an append of related atoms 1, x, x^2, x^3.
Two Correction Rules

The initial trial solution y obtained by constructing atoms from $g(x) = x^n f(x)$ is not the trial solution with fewest atoms. It is a sum of terms which can be organized into groups of related atoms, and it is known that each group contains n superfluous terms. The correction rules describe how to remove the superfluous terms, which produces the desired corrected trial solution with fewest possible atoms.
Correction Rule I

If some variable d_p is missing after substitution Step 2, then the system of linear equations for d_1, \ldots, d_k fails to have a unique solution. In the language of linear algebra, a missing variable d_p in the system of linear equations is a free variable, which implies the linear system in the unknowns d_1, \ldots, d_k has, among the three possibilities, infinitely many solutions.

A symbol d_p appearing in a trial solution will be missing in Step 2 if and only if it multiplies an atom $A(x)$ that is a solution of the homogeneous equation. Because d_p will be a free variable [any missing variable is a free variable], to which we will assign value zero in Step 3, the term $d_p A(x)$ can be removed from the trial solution. We can do this in advance, to decrease the number of symbols in the trial solution.

Rule I. Remove all terms $d_p A(x)$ in the trial solution of Step 1 for which atom $A(x)$ is a solution of the homogeneous differential equation.
Correction Rule II

The trial solution always contains superfluous atoms, introduced by using $x^n f(x)$ to construct the trial solution instead of $f(x)$. For example, the equation $y'' + y = x^2$ would have trial solution $y = d_1 + d_2 x + d_3 x^2 + d_4 x^3 + d_5 x^4$, with atoms x^3 and x^4 superfluous, because $y_p = x^2 - 2$. We could have replaced the 5-term trial solution by 3-termed trial solution $y = d_1 + d_2 x + d_3 x^2$. There is a rule for how to remove superfluous terms, which combines easily with Rule I:

Rule II. Terms removed from Rule I appear in groups of related atoms

$$B(x), \quad xB(x), \quad \ldots, \quad x^m B(x),$$

where $B(x)$ is a base atom, that is, an atom not containing a power of x. Rule I removes the first k of these atoms from the trial solution. Rule II removes the last $n - k$ of these atoms. The ones removed are called superfluous atoms.
An Illustration

Assume the differential equation has order $n = 2$ and the trial solution contains a sub-list of related atoms

$$e^{2x}, xe^{2x}, x^2e^{2x}, x^3e^x.$$

Example 1

Assume e^{2x} is not a solution of the homogeneous equation.

Then Rule I removes no atoms ($k = 0$) and Rule II removes the last 2 atoms ($n - k = 2 - 0 = 2$), resulting in the revised shorter atom sub-list

$$e^{2x}, xe^{2x}.$$

Example 2

Assume e^{2x} is a solution of the homogeneous equation.

Then Rule I removes atom e^{2x} ($k = 1$) from the start of the list and Rule II removes x^3e^{2x} from the end of list ($n - k = 2 - 1 = 1$), resulting in the revised sub-list

$$xe^{2x}, x^2e^{2x}.$$
Observations

• Rule I and Rule II together imply that exactly \(n \) atoms are removed from every complete sub-list of related atoms in the original trial solution.

• The \(n \) atoms are removed from the two ends, killing \(k \) from the beginning of the list and \(n - k \) from the end of the list.

• Substitution of the trial solution into the differential equation creates a the system of linear algebraic equations for the undetermined coefficients \(d_1, d_2, d_3, \ldots \), in which every symbol \(d_j \) appears! There are no free variables and the total number of atoms used in \(y \) cannot be reduced.

• The system of equations has the least possible dimension and a unique solution for the undetermined coefficients.
A Shortcut

Building the atom list from $g(x) = x^n f(x)$ requires subsequent removal of n atoms from each sub-list of related atoms. Building a short atom list from $f(x)$ requires a subsequent append of atoms to each sub-list of related atoms. The second method, which requires less writing, is a shortcut recommended after learning the basic method of removing atoms.

The idea for appending the atoms is the realization that the factor x^n used in $g(x) = x^n f(x)$ causes n extra atoms to appear in a sub-list of related atoms. Here are the facts:

- If the first atom in the sublist, base atom B, is a solution of the homogeneous differential equation, then it is removed. This causes the first of the n appended atoms to be kept.
- If the first two atoms B, xB are solutions of the homogeneous differential equation, then both are removed. This causes the first two of the n appended atoms to be kept.
- If the first three atoms $B, xB, x^2 B$ are solutions of the homogeneous differential equation, then all three are removed. This causes the first three of the n appended atoms to be kept.
A Shortcut for Correction Rule II

Let a sub-list of related atoms be constructed from \(f(x) \) instead of \(g(x) = x^n f(x) \).
Each removal of an atom from the left causes an append of a related atom on the right.

An Example for \(f(x) = 11.578x^3e^x + 22.1 \cos 2x \)

Consider the sub-list constructed from atom \(x^3e^x \). The other atom \(\cos 2x \) is treated similarly. Assume \(n = 3 \) and \(e^x, xe^x \) are homogeneous DE solutions.

<table>
<thead>
<tr>
<th>Long sub-list from (x^n f(x))</th>
<th>(e^x)</th>
<th>(xe^x)</th>
<th>(x^2e^x)</th>
<th>(x^3e^x)</th>
<th>(x^4e^x)</th>
<th>(x^5e^x)</th>
<th>(x^6e^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short sub-list from (f(x))</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
</tr>
<tr>
<td>Remove one on the left</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(x^4e^x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Append one on the right</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
</tr>
<tr>
<td>Remove one more from the left</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(x^4e^x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Append one more on the right</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(x^4e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
</tr>
<tr>
<td>Corrected list</td>
<td>(e^x)</td>
<td>(xe^x)</td>
<td>(x^2e^x)</td>
<td>(x^3e^x)</td>
<td>(x^4e^x)</td>
<td>(x^5e^x)</td>
<td>(x^6e^x)</td>
</tr>
</tbody>
</table>