Math 2250, Numerical Methods
Maple Project Sample Solution
Spring 2010

References: Code in maple appears in 2250mapleL4-sample-S2010.txt at URL http://www.math.utah.edu/~gustafso/. This document: 2250mapleL4-sample-S2010.pdf. Other related and required documents are available at the web site:

- Numerical Solution of First Order DE (typeset, 19 pages, 220k pdf). A resource similar to the textbook, with maple examples and deeper detail. It is for a second reading, in case Edwards-Penney left too many questions unanswered.
- Numerical DE coding hints, 2250numerical-hints.txt, TEXT Document (1 page, 2k). A modified portion of this document is appended here, for completeness.
- The web copy 2250mapleL4-sample-S2010.txt of the text in this document is suited for mouse copy and paste of maple code segments.

Problem ER-2. (E & P Exercise 2.6-36, Symbolic Solution)
The exact symbolic solution of the Logistic problem \(y' = 0.02225y - 0.0003y^2, \; y(0) = 25 \) is

\[
y(x) = \frac{2225}{30 + 59e^{-89x/4000}}
\]

Using textbook techniques, Chapter 2, derive the answer. Then check the answer in maple.

Solution.
Derivation Details. The differential equation is a Verhulst-Logistic equation, studied in Section 2.1, appearing as equation (6):

\[
\frac{dy}{dx} = ky(M - y), \quad kM = 0.02225, \quad k = 0.0003.
\]

The unique solution \(y(x) \) with \(y(0) = y_0 \) is given by equation (7):

\[
y(x) = \frac{My_0}{y_0 + (M - y_0)e^{-kMx}}.
\]

The fraction will be multiplied top and bottom by the factor \(k/y_0 \), to obtain

\[
y(t) = \frac{k/y_0}{k/y_0} \cdot \frac{My_0}{y_0 + (M - y_0)e^{-kMx}}
\]

\[
= \frac{kM}{k + (kM/y_0 - k)e^{-kMx}}
\]

\[
= \frac{0.02225}{0.02225 + (0.02225/25 - 0.0003)e^{-0.02225x}}
\]

\[
= \frac{2225}{100000 + 0.0003 + (0.02225/25 - 0.0003)e^{-0.02225x}}
\]

\[
= \frac{2225}{30 + 59e^{-89x/4000}}.
\]

Answer Check in Maple.

```maple
# Check the exact symbolic solution
de:=diff(y(t),t)=0.02225*y(t) - 0.0003*y(t)^2;
ic:= y(0)=25;
dsolve({de,ic},y(t));
```

Staple this page on top of your hand-written report
Problem L4.1. (E & P Exercise 2.6-36)

Consider the initial value problem \(y' = 0.02225y - 0.0003y^2, \) \(y(0) = 25 \) with symbolic solution \(y(t) = \frac{2225}{30 + 59e^{-89t/4000}}. \)

Apply Euler’s method to find the numerical solution \(y(x) \) on \(x = 0 \) to \(x = 250. \) Write computer code to produce two dot tables. The first has \(n + 1 = 101 \) rows, \(h = 250/n = 2.5. \) The second has \(n + 1 = 201 \) rows, \(h = 250/n = 1.25. \) The computation should find the missing digits in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-approx, (h = 2.5)</td>
<td>25.00000000</td>
<td>45.0101????</td>
<td>61.2965????</td>
<td>69.4877????</td>
<td>72.6063????</td>
<td>73.6622????</td>
</tr>
<tr>
<td>y-approx, (h = 1.25)</td>
<td>25.00000000</td>
<td>45.0280????</td>
<td>61.2316????</td>
<td>69.4052????</td>
<td>72.5539????</td>
<td>73.6367????</td>
</tr>
<tr>
<td>actual (y(x))</td>
<td>25.00000000</td>
<td>45.04465339</td>
<td>61.16674082</td>
<td>69.32349992</td>
<td>72.50146404</td>
<td>73.61087799</td>
</tr>
<tr>
<td>Error(approx, actual)</td>
<td>0.0000%</td>
<td>0.03??%</td>
<td>0.10??%</td>
<td>0.11??%</td>
<td>0.07??%</td>
<td>0.03??%</td>
</tr>
</tbody>
</table>

Part I. Reproduce, by transcribing computer data, the table above, and fill in missing digits. For the percentage error with \(h = 250/200 = 1.25, \) use the equation

\[
\text{Error(approx, actual)} = 100 \times \frac{|\text{approx} - \text{actual}|}{|\text{actual}|}.
\]

Solution.

y-approx, \(h = 2.5, \) 25.00000000, 45.01012660, 61.29651142, 69.48777402, 72.60632272, 73.66229582.

y-approx, \(h = 1.25, \) 25.00000000, 45.02802159, 61.23165186, 69.40522495, 72.55394452, 73.63678526.

Symbolic \(y(x), \) 25.00000000, 45.04465339, 61.16674082, 69.32349992, 72.50146404, 73.61087799.

Error(approx, actual), \(h = 1.25, \) percentages 0.0, 0.03692291704, 0.1061214626, 0.1182504140, 0.07238540724, 0.03519489335.

Part II. Hand-check the first dot table for one step. The answer should be the same as line 2 of the first dot table (which has 101 lines). Assume the given symbolic solution is correct. Don’t repeat details already done in ER-2. Test the answers against the symbolic solution, as suggested in the table above.

Hand Check for Euler.

One step.
\(h = 2.5 \)
\(x_0 = 0 \)
\(y_0 = 25 \)
\(f(x,y) = 0.02225y - 0.0003y^2 \)
\(y_1 = y_0 + h f(x_0,y_0) \)
\(= 25 + 2.5 (0.02225 (25) - 0.0003 (25)^2) \)
\(= 25.921875 \)

Symbolic Solution Check.

The Euler answer and the symbolic answer agree to one digit.

Part III. Include an appendix of the computer code used.

```maple
# Now for the Euler code to make the dot table, error percentages and plot.
# Euler. Group 1, initialize.
f:=(x,y)->0.02225*y - 0.0003*y^2;
x0:=0:y0:=25:Dots:=[x0,y0]:n:=100:h:=250/n:
# Group 2, repeat n times. Euler's method
```
for i from 1 to n do
 Y:=y0+h*f(x0,y0);
 x0:=x0+h:y0:=Y:Dots:=Dots,[evalf(x0),evalf(y0)];
od:

Group 3, display relevant dots and plot.
Exact:=x->2225/(30+59*exp(-89 *x/4000));
P:=unapply(evalf(100*abs(exact-approx)/abs(exact)),(exact,approx));
m:=n/5:X:=seq(1+m*j,j=0..n/m)]: # List of relevant indices
print("Dots"),seq(Dots[k],k=X);
print("Exact"),seq(Exact(Dots[k][1]),k=X);
print("Error"),seq(P(Exact(Dots[k][1]),Dots[k][2]),k=X);
#plot([Dots]);

The output from this program:

"Dots"
[0, 25], [50., 45.01012660], [100., 61.29651142], [150., 69.48777402], [200., 72.60632272], [250., 73.66229582]

"Exact" 25, 45.04465339, 61.16674082, 69.32324992, 72.50146404, 73.61087799

"Error" 0., 0.07665014025, 0.2121587619, 0.2373288907, 0.1446297415, 0.06985085819

Problem L4.2. (E & P Exercise 2.6-36)

Consider the initial value problem \(y' = 0.02225 y - 0.0003 y^2 \), \(y(0) = 25 \) with symbolic solution \(y(t) = \frac{2225}{30 + 59e^{-89t/4000}} \).

Apply Heun's method to finds the numerical solution \(y(x) \) on \(x = 0 \) to \(x = 250 \). Write computer code to produce two dot tables. The first has \(n + 1 = 101 \) rows, \(h = 250/200 = 1.25 \). The second has \(n + 1 = 201 \) rows, \(h = 250/200 = 1.25 \). The computation should find the missing digits in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-approx, (h = 2.5)</td>
<td>25.000000000</td>
<td>45.0419????</td>
<td>61.1624????</td>
<td>69.3195????</td>
<td>72.4992????</td>
<td>73.6098????</td>
</tr>
<tr>
<td>y-approx, (h = 1.25)</td>
<td>25.000000000</td>
<td>45.0439????</td>
<td>61.1656????</td>
<td>69.3223????</td>
<td>72.5009????</td>
<td>73.6106????</td>
</tr>
<tr>
<td>actual (y(x))</td>
<td>25.000000000</td>
<td>45.04465339</td>
<td>61.16674082</td>
<td>69.32324992</td>
<td>72.50146404</td>
<td>73.61087799</td>
</tr>
<tr>
<td>Error(approx,actual)</td>
<td>0.0000%</td>
<td>0.0017??%</td>
<td>0.0017??%</td>
<td>0.0017??%</td>
<td>0.0007??%</td>
<td>0.0007??%</td>
</tr>
</tbody>
</table>

Part I. Reproduce, by transcribing computer data, the table above, and fill in missing digits. For the percentage error with \(h = 250/200 = 1.25 \), use the equation

\[
Error(approx, actual) = 100 \frac{|approx - actual|}{|actual|}.
\]

Solution.

y-approx, \(h = 2.5 \), 25, 45.04191584, 61.16246299, 69.31954666, 72.49927181, 73.60981811.
y-approx, \(h = 1.25 \), 25, 45.04396719, 61.16567946, 69.32233642, 72.50092484, 73.61061773.
Symbolic \(y(x) \), 25, 45.04465339, 61.16674082, 69.32324992, 72.50146404, 73.61087799.
Error(approx,actual), \(h = 1.25 \), percentages 0.0, 0.001523377245, 0.001735191357, 0.001317739721, 0.0007437091197, 0.0003535618744.

Part II. Hand-check the first dot table for one step. The answer should be the same as line 2 of the first dot table (which has 101 lines). Assume the given symbolic solution is correct. Don’t repeat details already done in ER-2. Test the answers against the symbolic solution, as suggested in the table above.

Hand Check for Heun.

One step.
\(h=2.5 \)
x0 = 0
y0 = 25
\(f(x,y) = 0.02225 y - 0.0003 y^2 \)
y1 = y0 + h f(x0,y0) = 25 + 2.5 (0.02225 (25) - 0.0003 (25)^2) = 25.922875
\[y_2 = y_0 + h(f(x_0, y_0) + f(x_0+h, y_1))/2 = 25 + 2.5 \left(\frac{0.02225(25) - 0.0003(25)^2}{2}\right) + 2.5 \left(\frac{0.02225(25.921875) - 0.0003(25.921875)^2}{2}\right) = 25.92991080 \]

Dots[1] = [0, 25], Dots[2] = [2.500000000, 25.92991080]. Answer checks.

Symbolic Solution Check.
The Heun answer and the symbolic answer agree to two digits.

Part III. Include an appendix of the computer code used.

Now for the Heun code to make the dot table, error percentages and plot.
Heun. Group 1, initialize.
\[f := (x, y) \rightarrow 0.02225\, y - 0.0003\, y^2; \]
\[x_0 := 0; y_0 := 25; \text{Dots} := [x_0, y_0]; n := 100; h := 250/n; \]
Group 2, repeat n times. Heun’s method
for i from 1 to n do
Y1 := y0 + h * f(x0, y0);
Y := y0 + h * (f(x0, y0) + f(x0 + h, Y1))/2;
x0 := x0 + h; y0 := Y;
Dots := Dots, [evalf(x0), evalf(y0)];
end do:
Group 3, display relevant dots and plot.
\[\text{Exact} := x \rightarrow \frac{2225}{30 + 59 \, e^{-89\, x/4000}}; \]
\[P := \text{unapply}(\text{evalf}(100*\text{abs}(\text{exact}-\text{approx})/\text{abs}(\text{exact})), (\text{exact}, \text{approx})); \]
m := n/5:
x := \{seq(1 + m*j, j = 0 .. n/m)\}; # List of relevant indices
print("Dots"), seq(Dots[k][1], k = X);
print("Exact"), seq(Exact(Dots[k][1]), k = X);
print("Error"), seq(P(Exact(Dots[k][1]), Dots[k][2]), k = X);
#plot([Dots]);

The output from this program:

<table>
<thead>
<tr>
<th>x</th>
<th>0.0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-approx, h = 2.5</td>
<td>25.000000000</td>
<td>45.04465339</td>
<td>61.16674082</td>
<td>69.32324992</td>
<td>72.50146404</td>
<td>73.61087799</td>
</tr>
<tr>
<td>y-approx, h = 1.25</td>
<td>25.000000000</td>
<td>45.04465339</td>
<td>61.16674082</td>
<td>69.32324992</td>
<td>72.50146404</td>
<td>73.61087799</td>
</tr>
<tr>
<td>actual y(x)</td>
<td>25.000000000</td>
<td>45.04465339</td>
<td>61.16674082</td>
<td>69.32324992</td>
<td>72.50146404</td>
<td>73.61087799</td>
</tr>
<tr>
<td>Error(approx, actual)</td>
<td>0.000000%</td>
<td>0.000000%</td>
<td>0.000000%</td>
<td>0.000000%</td>
<td>0.000000%</td>
<td>0.000000%</td>
</tr>
</tbody>
</table>

Problem L4.3. (E & P Exercise 2.6-36)
Consider the initial value problem \(y' = 0.02225y - 0.0003y^2 \), \(y(0) = 25 \) with symbolic solution \(y(t) = \frac{2225}{30 + 59e^{-89\, t/4000}} \).
Apply the RK4 method to finds the numerical solution \(y(x) \) on \(x = 0 \) to \(x = 250 \). Write computer code to produce two dot tables. The first has \(n+1 = 101 \) rows, \(h = 250/n = 2.5 \). The second has \(n+1 = 201 \) rows, \(h = 250/n = 1.25 \). The computation should find the missing digits in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y-approx, h = 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y-approx, h = 1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actual y(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error(approx, actual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part I. Reproduce, by transcribing computer data, the table above, and fill in missing digits. For the percentage error with \(h = 250/200 = 1.25 \), use the equation
\[
\text{Error(approx, actual)} = 100 \frac{|\text{approx} - \text{actual}|}{|\text{actual}|}.
\]

Solution.
y-approx, h = 2.5, 25.0, 45.04465322, 61.16674048, 69.32324952, 72.50146380, 73.61087789.
y-approx, h = 1.25, 25.0, 45.04465348, 61.16674086, 69.32324992, 72.50146405, 73.61087799.
Symbolic $y(x)$, 25, 45.04465339, 61.16674082, 69.32324992, 72.50146404, 73.61087799.
Error(approx,actual), $h = 1.25$, percentages 0.0, 0.3774032814e-6, 0.5558576368e-6, 0.5770069933e-6, 0.3310277981e-6, 0.1358494868e-6.

Part II. Assume the given symbolic solution is correct. Don’t repeat details already done in ER-2. Test the answers against the symbolic solution, as suggested in the table above.

Symbolic Solution Check.
The RK4 answer and the symbolic answer **agree to six digits**.

Part III. Include an appendix of the computer code used.

```plaintext
# Now for the RK4 code to make the dot table, error percentages and plot.
# RK4. Group 1, initialize.
f:=(x,y)->0.02225 *y - 0.0003*y^2;
x0:=0:y0:=25:Dots:=[x0,y0]:n:=100:h:=250/n:
# Group 2, repeat n times. RK4 method.
for i from 1 to n do
  k1:=h*f(x0,y0):
k2:=h*f(x0+h/2,y0+k1/2):
k3:=h*f(x0+h/2,y0+k2/2):
k4:=h*f(x0+h,y0+k3):
  Y:=y0+(k1+2*k2+2*k3+k4)/6:
x0:=x0+h:y0:=Y:Dots:=Dots,[evalf(x0),evalf(y0)];
od:
# Group 3, display relevant dots and plot.
Exact:=x->2225/(30+59*exp(-89 *x/4000));
P:=unapply(evalf(100*abs(exact-approx)/abs(exact)),(exact,approx)):
m:=n/5:X:= [seq(1+m*j,j=0..n/m)]: # List of relevant indices
print("Dots"),seq(Dots[k][1],k=X);
print("Exact"),seq(Exact(Dots[k][1]),k=X);
print("Error"),seq(P(Exact(Dots[k][1]),Dots[k][2]),k=X);
plot(Dots);
```

The output from this program:

```
"Dots"
[0, 25], [50., 45.04465322], [100., 61.16674048],
[150., 69.32324952], [200., 72.50146380], [250., 73.61087799]
"Exact"
25, 45.04465339, 61.16674082, 69.32324992, 72.50146404, 73.61087799
"Error"
0.0, .3774032814e-6, .5558576368e-6, .5770069933e-6, .3310277981e-6, .1358494868e-6
```

Staple this page on top of your hand-written and maple worksheet report
Warning: These snips of code made for \(y' = 1 - x - y \), \(y(0) = 3 \).

Code computes approx values for \(y(0.1) \) to \(y(1) \).
'Dots' is the list of dots for connect-the-dots graphics.

==
Euler. Group 1, initialize.

\(f := \langle x, y \rangle \rightarrow 1 - x - y; \)
\(x_0 := 0; y_0 := 3; h := 0.1; \)
\(\text{Dots} := [x_0, y_0]; n := 200; \)

Group 2, repeat n times. Euler’s method

for \(i \) from 1 to \(n \) do
\(Y := y_0 + h \cdot f(x_0, y_0); \)
\(x_0 := x_0 + h; y_0 := Y; \)
\(\text{Dots} := \text{Dots}, [x_0, y_0]; \)
od:

Group 3, display relevant dots and plot.

\(\text{Exact} := x \rightarrow 2 - x + \exp(-x); \)
\(P := \text{unapply}(\text{evalf}(100 \cdot \text{abs}(\text{exact} - \text{approx})/\text{abs}(\text{exact})), (\text{exact}, \text{approx})); \)
\(m := 40; X := [\text{seq}(i + m \cdot j, j = 0 .. \lfloor n / m \rfloor)]; \# \text{List of relevant indices} \)
print("Dots"), \text{seq}([X[k], k = X];
print("Exact"), \text{seq}(\text{Exact}(X[k])[1], k = X);
print("Error"), \text{seq}(P(\text{Exact}(X[k])[1]), \text{Dots}[k][2], k = X);
plot([Dots]);

==
Heun. Group 1, initialize.

\(f := \langle x, y \rangle \rightarrow 1 - x - y; \)
\(x_0 := 0; y_0 := 3; h := 0.1; \)
\(\text{Dots} := [x_0, y_0]; n := 200; \)

Group 2, repeat n times. Heun method

for \(i \) from 1 to \(n \) do
\(Y_1 := y_0 + h \cdot f(x_0, y_0); \)
\(Y := y_0 + h \cdot (f(x_0, y_0) + f(x_0 + h, Y_1))/2; \)
\(x_0 := x_0 + h; y_0 := Y; \)
\(\text{Dots} := \text{Dots}, [x_0, y_0]; \)
od:

Group 3, display relevant dots and plot.

\(\text{Dots}[1], \text{Dots}[2], \text{seq}(\text{Dots}[1 + 40 \cdot j], j = 1 .. \lfloor n/40 \rfloor); \)
plot([Dots]);

==
RK4. Group 1, initialize.

\(f := \langle x, y \rangle \rightarrow 1 - x - y; \)
\(x_0 := 0; y_0 := 3; h := 0.1; \)
\(\text{Dots} := [x_0, y_0]; n := 100; \)

Group 2, repeat n times. RK4 method

for \(i \) from 1 to \(n \) do
\(k_1 := h \cdot f(x_0, y_0); \)
\(k_2 := h \cdot f(x_0 + h/2, y_0 + k_1/2); \)
\(k_3 := h \cdot f(x_0 + h/2, y_0 + k_2/2); \)
\(k_4 := h \cdot f(x_0 + h, y_0 + k_3); \)
\(Y := y_0 + (k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4)/6; \)
\(x_0 := x_0 + h; y_0 := Y; \)
\(\text{Dots} := \text{Dots}, [x_0, y_0]; \)
od:

Group 3, display some dots and plot.

\(\text{Dots}[1], \text{Dots}[2], \text{Dots}[101]; \)
plot([Dots]);