Differential Equations and Linear Algebra 2250

Midterm Exam 3 [12:25 lecture] Version 2.12.2010
 Scores

 3.

 4.

 5.

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

3. (Chapter 5) Complete all.

(3a) [40%] Write the solution x(t) of

$$x''(t) + 9x(t) = 21\sin(4t), \quad x(0) = x'(0) = 0,$$

as the sum of two harmonic oscillations of different natural frequencies. Report the two natural frequencies and the solution x(t).

To save time, don't convert to phase-amplitude form.

Answer:

The frequencies are 4 and 3, the solution is $x(t) = -3\sin(4t) + 4\sin(3t)$.

(3b) [30%] Given 14x''(t) + 41x'(t) + 15x(t) = 0, which represents a damped spring-mass system with m = 14, c = 41, k = 15, determine if the equation is over-damped, critically damped or under-damped. To save time, do not solve for x(t)!

Answer:

Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^2 - 4ac = 41^2 - 4(14)(15) = 841$, therefore there are two distinct roots and the equation is over-damped. Alternatively, factor $14r^2 + 41r + 15$ to obtain roots -3/7, -5/2 and then classify as over-damped.

(3c) [30%] Consider the variation of parameters formula (33) in Edwards-Penney,

$$y_p(x) = y_1(x) \left(\int \frac{-y_2(x)f(x)}{W(x)} dx \right) + y_2(x) \left(\int \frac{y_1(x)f(x)}{W(x)} dx \right).$$

Given the second order equation

$$y''(x) + 34y'(x) + 298y(x) = 7\cos(x^2) + 13\sin(x),$$

write the equations for the variables y_1 , y_2 , W, f. To save time, do not write out y_p and do not try to evaluate any integrals.

Answer:
Variables are
$$y_1(x) = e^{-17x} \cos(3x)$$
, $y_2(x) = e^{-17x} \sin(3x)$, $f(x) = 7 \cos(x^2) + 13 \sin(x)$, $W(x) = 3e^{-34x}$.

(3c) [30%] (Alternate version announced at exam time)

$$y''(x) + 34y'(x) + 289y(x) = 7\cos(x^2) + 13\sin(x),$$

Answer:

Variables are $y_1(x) = e^{-17x}$, $y_2(x) = xe^{-17x}$, $f(x) = 7\cos(x^2) + 13\sin(x)$, $W(x) = e^{-34x}$.

Use this page to start your solution. Attach extra pages as needed.

4. (Chapter 5) Complete all.

(4a) [60%] A homogeneous linear differential equation with constant coefficients has characteristic equation of order 9 with roots 0, 0, 3, 3, 3, 2i, -2i, 2i, -2i, listed according to multiplicity. The corresponding nonhomogeneous equation for unknown y(x) has right side $f(x) = 4e^x + 5e^{3x} + 6x^3 + 7x \sin 2x$. Determine the undetermined coefficients **shortest** trial solution for y_p .

To save time, do not evaluate the undetermined coefficients and do not find $y_p(x)$! Undocumented detail or guessing earns no credit.

Answer:

The atom list for f(x) is e^x , e^{3x} , $1, x, x^2, x^3$, $\cos 2x$, $x \cos 2x$, $\sin 2x$, $x \sin 2x$. The list of 10 atoms is broken into 5 groups, each group having exactly one base atom: (1) e^x , (2) e^{3x} , (3) $1, x, x^2, x^3$, (4) $\cos 2x$, $x \cos 2x$ (5) $\sin 2x$, $x \sin 2x$. The modification rule is applied to groups 3 through 5. The trial solution is a linear combination of the replacement 10 atoms in the new list (1) e^x , (2) $x^3 e^{3x}$, (3) x^2, x^3, x^4, x^5 , (4) $x^2 \cos 2x$, $x^3 \cos 2x$ (5) $x^2 \sin 2x$, $x^3 \sin 2x$. Groups 1 is not modified.

(4b) [40%] Let $f(x) = 4x^2e^{2x} + xe^{-x}\sin 2x$. Find the roots of the characteristic polynomial of a constant-coefficient linear homogeneous differential equation which has f(x) as a solution.

Answer:

Because $xe^{-x}\sin 2x$ is an atom for the differential equation if and only if $e^{-x}\sin 2x$, $xe^{-x}\sin 2x$, $e^{-x}\cos 2x$, $xe^{-x}\cos 2x$ are atoms. Then the characteristic equation must have roots -1 + 2i, -1 - 2i, -1 + 2i, -1 - 2i, listing according to multiplicity. Similarly, x^2e^{2x} is an atom for the differential equation if and only if 2 is a triple root of the characteristic equation. Total of 7 roots: $2, 2, 2, -1 \pm 2i, -1 \pm 2i$ with product of the factors $(r-2)^3((r+1)^2 + 4)((r+1)^2 + 4)$ equal to the 7th order characteristic polynomial.

Use this page to start your solution. Attach extra pages as needed.

Name.

5. (Chapter 6) Complete all parts.

(5a) [40%] Find the eigenvalues of the matrix
$$A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 10 & 20 & 0 & 3 \\ 30 & 40 & -3 & 0 \end{pmatrix}$$

To save time, do not find eigenvectors!

Answer:

 $-1,5,\pm 3i.$ The block matrix determinant theorem can be used, or the cofactor method.

(5b) [30%] Given $A = \begin{pmatrix} 8 & 1 & -2 \\ 0 & 9 & 0 \\ -1 & 1 & 7 \end{pmatrix}$, which has eigenvalues 6, 9, 9, find all eigenvectors for eigenvalue 9. To save time, do not find the eigenvector for eigenvalue 6.

Answer:

One frame sequence is required for $\lambda = 3$. The sequence starts with $\begin{pmatrix} -1 & 1 & -2 \\ 0 & 0 & 0 \\ -1 & 1 & -2 \end{pmatrix}$, the last frame having two rows of zeros. There are two invented symbols t_1 , t_2 in the last frame algorithm answer $x_1 = t_1 - 2t_2$, $x_2 = t_1$, $x_3 = t_2$. Taking ∂_{t_1} and ∂_{t_2} gives two eigenvectors, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$.

(5c) [40%] Find the matrices P, D in the diagonalization equation AP = PD for the matrix $A = \begin{pmatrix} 3 & -1 \\ 8 & -3 \end{pmatrix}$.

Answer:

The eigenpairs are
$$\begin{pmatrix} -1, \begin{pmatrix} 1\\4 \end{pmatrix} \end{pmatrix}$$
, $\begin{pmatrix} 1, \begin{pmatrix} 1\\2 \end{pmatrix} \end{pmatrix}$. Then $P = \begin{pmatrix} 1&1\\4&2 \end{pmatrix}$, $D = \begin{pmatrix} -1&0\\0&1 \end{pmatrix}$.

Use this page to start your solution. Attach extra pages as needed.