Vector Spaces and Subspaces

- ullet Vector Space $oldsymbol{V}$
- ullet Subspaces S of Vector Space V
 - The Subspace Criterion
 - Subspaces are Working Sets
 - The Kernel Theorem
 - Not a Subspace Theorem
- Independence and Dependence in Abstract spaces
 - Independence test for two vectors v_1 , v_2 . An Illustration.
 - Geometry and Independence
 - Rank Test and Determinant Test for Fixed Vectors
 - Sampling Test and Wronskian Test for Functions.
 - Independence of Atoms

Vector Space V ___

It is a **data set** V plus a **toolkit** of eight (8) algebraic properties. The data set consists of packages of data items, called **vectors**, denoted \vec{X} , \vec{Y} below.

Closure	The operations $\vec{X} + \vec{Y}$ and $k\vec{X}$ are defined and result in a new vector which is also	
	in the set V .	
Addition	$ec{X} + ec{Y} = ec{Y} + ec{X}$	commutative
	$ec{X} + (ec{Y} + ec{Z}) = (ec{Y} + ec{X}) + ec{Z}$	associative
	Vector $\vec{0}$ is defined and $\vec{0} + \vec{X} = \vec{X}$	zero
	Vector $-\vec{X}$ is defined and $\vec{X}+(-\vec{X})=\vec{0}$	negative
Scalar	$k(ec{X}+ec{Y})=kec{X}+kec{Y}$	distributive I
multiply	$(k_1+k_2)ec{X}=k_1ec{X}+k_2ec{X}$	distributive II
	$k_1(k_2ec{X})=(k_1k_2)ec{X}$	distributive III
	$1ec{X}=ec{X}$	identity

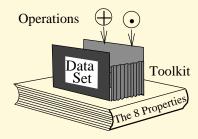


Figure 1. A *Vector Space* is a data set, operations <u>H</u> and <u>□</u>, and the 8-property toolkit.

Definition of Subspace

A subspace S of a vector space V is a nonvoid subset of V which under the operations + and \cdot of V forms a vector space in its own right.

Subspace Criterion

Let S be a subset of V such that

- 1. Vector $\mathbf{0}$ is in S.
- 2. If \vec{X} and \vec{Y} are in S, then $\vec{X} + \vec{Y}$ is in S.
- 3. If \vec{X} is in S, then $c\vec{X}$ is in S.

Then S is a subspace of V.

Items 2, 3 can be summarized as *all linear combinations of vectors in* S *are again in* S. In proofs using the criterion, items 2 and 3 may be replaced by

$$c_1 \vec{X} + c_2 \vec{Y}$$
 is in S .

Subspaces are Working Sets

We call a subspace S of a vector space V a **working set**, because the purpose of identifying a subspace is to shrink the original data set V into a smaller data set S, customized for the application under study.

A Key Example. Let V be ordinary space \mathbb{R}^3 and let S be the plane of action of a planar kinematics experiment. The data set for the experiment is all 3-vectors \mathbf{v} in V collected by a data recorder. Detected and recorded is the 3D position of a particle which has been constrained to a plane. The plane of action S is computed as a homogeneous equation like 2x+3y+1000z=0, the equation of a plane, from the recorded data set in V. After least squares is applied to find the optimal equation for S, then S replaces the larger data set V. The customized smaller set S is the *working set* for the kinematics problem.

The Kernel Theorem

Theorem 1 (Kernel Theorem)

Let V be one of the vector spaces \mathbb{R}^n and let A be an $m \times n$ matrix. Define a smaller set S of data items in V by the kernel equation

$$S = \{x : x \text{ in } V, \quad Ax = 0\}.$$

Then S is a subspace of V.

In particular, operations of addition and scalar multiplication applied to data items in S give answers back in S, and the 8-property toolkit applies to data items in S.

Proof: Zero is in V because A0 = 0 for any matrix A. To verify the subspace criterion, we verify that $z = c_1x + c_2y$ for x and y in V also belongs to V. The details:

$$egin{aligned} A\mathbf{z} &= A(c_1\mathbf{x} + c_2\mathbf{y}) \ &= A(c_1\mathbf{x}) + A(c_2\mathbf{y}) \ &= c_1A\mathbf{x} + c_2A\mathbf{y} \ &= c_1\mathbf{0} + c_2\mathbf{0} & \mathsf{Because}\ A\mathbf{x} = A\mathbf{y} = \mathbf{0}, \, \mathsf{due}\ \mathsf{to}\ \mathsf{x},\, \mathsf{y}\ \mathsf{in}\ V. \ &= \mathbf{0} & \mathsf{Therefore},\, A\mathbf{z} = \mathbf{0}, \, \mathsf{and}\ \mathsf{z}\ \mathsf{is}\ \mathsf{in}\ V. \end{aligned}$$

The proof is complete.

Not a Subspace Theorem

Theorem 2 (Testing S not a Subspace)

Let V be an abstract vector space and assume S is a subset of V. Then S is not a subspace of V provided one of the following holds.

- (1) The vector 0 is not in S.
- (2) Some x and -x are not both in S.
- (3) Vector x + y is not in S for some x and y in S.

Proof: The theorem is justified from the *Subspace Criterion*.

- 1. The criterion requires 0 is in S.
- 2. The criterion demands cx is in S for all scalars c and all vectors x in S.
- 3. According to the subspace criterion, the sum of two vectors in S must be in S.

Definition of Independence and Dependence

A list of vectors v_1, \ldots, v_k in a vector space V are said to be **independent** provided every linear combination of these vectors is uniquely represented. **Dependent** means **not independent**.

Unique representation _____

An equation

$$a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k = b_1\mathbf{v}_1 + \cdots + b_k\mathbf{v}_k$$

implies matching coefficients: $a_1 = b_1, \ldots, a_k = b_k$.

Independence Test

Form the system in unknowns c_1, \ldots, c_k

$$c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k = 0.$$

Solve for the unknowns [how to do this depends on V]. Then the vectors are independent if and only if the unique solution is $c_1 = c_2 = \cdots = c_k = 0$.

Independence test for two vectors v_1 , v_2

In an abstract vector space V, form the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = 0.$$

Solve this equation for c_1 , c_2 .

Then v_1 , v_2 are independent in V if and only if the system has unique solution $c_1 = c_2 = 0$.

Geometry and Independence

- One fixed vector is independent if and only if it is nonzero.
- Two fixed vectors are independent if and only if they form the edges of a parallelogram of positive area.
- Three fixed vectors are independent if and only if they are the edges of a parallelepiped of positive volume.

In an abstract vector space V, two vectors [two data packages] are independent if and only if one is not a scalar multiple of the other.

Illustration

Vectors $\mathbf{v_1} = \mathbf{cos} \ x$ and $\mathbf{v_2} = \mathbf{sin} \ x$ are two data packages [graphs] in the vector space V of continuous functions. They are independent because one graph is not a scalar multiple of the other graph.

An Illustration of the Independence Test

Two column vectors are tested for independence by forming the system of equations $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = 0$, e.g,

$$c_1\left(egin{array}{c} -1 \ 1 \end{array}
ight) + c_2\left(egin{array}{c} 2 \ 1 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \end{array}
ight).$$

This is a homogeneous system Ac = 0 with

$$A=\left(egin{array}{cc} -1 & 2 \ 1 & 1 \end{array}
ight), \quad {
m c}=\left(egin{array}{c} c_1 \ c_2 \end{array}
ight).$$

The system Ac = 0 can be solved for c by frame sequence methods. Because rref(A) = I, then $c_1 = c_2 = 0$, which verifies independence.

If the system Ac = 0 is square, then $det(A) \neq 0$ applies to test independence.

There is **no chance to use determinants** when the system is not square, e.g., consider the homogeneous system

$$c_1 \left(egin{array}{c} -1 \ 1 \ 0 \end{array}
ight) + c_2 \left(egin{array}{c} 2 \ 1 \ 0 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight).$$

It has vector-matrix form Ac = 0 with 3×2 matrix A, for which det(A) is undefined.

Rank Test

In the vector space \mathbb{R}^n , the independence test leads to a system of n linear homogeneous equations in k variables c_1, \ldots, c_k . The test requires solving a matrix equation $A\mathbf{c} = 0$. The signal for independence is **zero free variables**, or nullity zero, or equivalently, maximal rank. To justify the various statements, we use the relation $\operatorname{nullity}(A) + \operatorname{rank}(A) = k$, where k is the column dimension of A.

Theorem 3 (Rank-Nullity Test)

Let v_1, \ldots, v_k be k column vectors in R^n and let A be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A) = k$ and dependent if $\operatorname{rank}(A) < k$. The conditions are equivalent to $\operatorname{nullity}(A) = 0$ and $\operatorname{nullity}(A) > 0$, respectively.

Determinant Test

In the unusual case when the system arising in the independence test can be expressed as $A\mathbf{c} = 0$ and A is square, then $\det(A) = 0$ detects dependence, and $\det(A) \neq 0$ detects independence. The reasoning is based upon the adjugate formula $A^{-1} = \operatorname{adj}(A)/\det(A)$, valid exactly when $\det(A) \neq 0$.

Theorem 4 (Determinant Test)

Let v_1, \ldots, v_n be n column vectors in \mathbb{R}^n and let A be the augmented matrix of these vectors. The vectors are independent if $\det(A) \neq 0$ and dependent if $\det(A) = 0$.

Sampling Test

Let functions f_1, \ldots, f_n be given and let x_1, \ldots, x_n be distinct x-sample values. Define

$$A = \left(egin{array}{cccc} f_1(x_1) & f_2(x_1) & \cdots & f_n(x_1) \ f_1(x_2) & f_2(x_2) & \cdots & f_n(x_2) \ dots & dots & \ddots & dots \ f_1(x_n) & f_2(x_n) & \cdots & f_n(x_n) \end{array}
ight).$$

Then $\det(A) \neq 0$ implies f_1, \ldots, f_n are independent functions.

Proof

We'll do the proof for n=2. Details are similar for general n. Assume $c_1f_1+c_2f_2=0$. Then for all x, $c_1f_1(x)+c_2f_2(x)=0$. Choose $x=x_1$ and $x=x_2$ in this relation to get Ac=0, where c has components c_1 , c_2 . If $\det(A)\neq 0$, then A^{-1} exists, and this in turn implies $c=A^{-1}Ac=0$. We conclude f_1 , f_2 are independent.

Wronskian Test

Let functions f_1, \ldots, f_n be given and let x_0 be a given point. Define

$$W = \left(egin{array}{cccc} f_1(x_0) & f_2(x_0) & \cdots & f_n(x_0) \ f_1'(x_0) & f_2'(x_0) & \cdots & f_n'(x_0) \ dots & dots & \cdots & dots \ f_1^{(n-1)}(x_0) & f_2^{(n-1)}(x_0) & \cdots & f_n^{(n-1)}(x_0) \end{array}
ight).$$

Then $\det(W) \neq 0$ implies f_1, \ldots, f_n are independent functions. The matrix W is called the Wronskian Matrix of f_1, \ldots, f_n and $\det(W)$ is called the Wronskian determinant.

Proof

We'll do the proof for n=2. Details are similar for general n. Assume $c_1f_1+c_2f_2=0$. Then for all x, $c_1f_1(x)+c_2f_2(x)=0$ and $c_1f_1'(x)+c_2f_2'(x)=0$. Choose $x=x_0$ in this relation to get Wc=0, where c has components c_1 , c_2 . If $\det(W)\neq 0$, then W^{-1} exists, and this in turn implies $c=W^{-1}Wc=0$. We conclude f_1 , f_2 are independent.

Atoms _

Definition. A **base atom** is one of the functions

 $1, \quad e^{ax}, \quad \cos bx, \quad \sin bx, \quad e^{ax}\cos bx, \quad e^{ax}\sin bx$

where b > 0. An **atom** is a base atom times a power x^n , where $n \geq 0$ is an integer.

The powers $1, x, x^2, ...$ are atoms (multiply base atom 1 by x^n). Multiples of these powers by $\cos bx$, $\sin bx$ are also atoms. Finally, multiplying all these atoms by e^{ax} expands and completes the list of atoms.

Alternatively, an ${\bf atom}$ is a function with coefficient 1 obtained as the real or imaginary part of the complex expression

 $x^k e^{ax}(\cos bx + i\sin bx).$

Illustration

We show the powers $1, x, x^2, x^3$ are independent atoms by applying the Wronskian Test:

$$W = \left(egin{array}{cccc} 1 & x_0 & x_0^2 & x_0^3 \ 0 & 1 & 2x_0 & 3x_0^2 \ 0 & 0 & 2 & 6x_0 \ 0 & 0 & 0 & 6 \end{array}
ight).$$

Then $\det(W) = 12 \neq 0$ implies the functions $1, x, x^2, x^3$ are linearly independent.

Subsets of Independent Sets are Independent

Suppose v_1 , v_2 , v_3 make an independent set and consider the subset v_1 , v_2 . If

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = 0$$

then also

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0$$

where $c_3 = 0$. Independence of the larger set implies $c_1 = c_2 = c_3 = 0$, in particular, $c_1 = c_2 = 0$, and then v_1 , v_2 are independent.

Theorem 5 (Subsets and Independence)

- A non-void subset of an independent set is also independent.
- Non-void subsets of dependent sets can be independent or dependent.

Atoms and Independence

Theorem 6 (Independence of Atoms)

Any list of distinct atoms is linearly independent.

Unique Representation

The theorem is used to extract equations from relations involving atoms. For instance:

$$(c_1-c_2)\cos x + (c_1+c_3)\sin x + c_1 + c_2 = 2\cos x + 5$$
 implies $c_1-c_2 = 2, \ c_1+c_3 = 0,$

 $c_1 + c_2 = 5$.

Atoms and Differential Equations

It is known that solutions of linear constant coefficient differential equations of order n and also systems of linear differential equations with constant coefficients have a general solution which is a linear combination of atoms.

- The harmonic oscillator $y'' + b^2y = 0$ has general solution $y(x) = c_1 \cos bx + c_2 \sin bx$. This is a linear combination of the two atoms $\cos bx$, $\sin bx$.
- The third order equation y''' + y' = 0 has general solution $y(x) = c_1 \cos x + c_2 \sin x + c_3$. The solution is a linear combination of the independent atoms $\cos x$, $\sin x$, 1.
- The linear dynamical system x'(t) = y(t), y'(t) = -x(t) has general solution $x(t) = c_1 \cos t + c_2 \sin t$, $y(t) = -c_1 \sin t + c_2 \cos t$, each of which is a linear combination of the independent atoms $\cos t$, $\sin t$.