Basic Theory of Linear Differential Equations

- Picard-Lindelöf Existence-Uniqueness
 - Vector nth Order Theorem
 - Second Order Linear Theorem
 - Higher Order Linear Theorem
- Homogeneous Structure
- Recipe for Constant-Coefficient Linear Homogeneous Differential Equations
 - First Order
 - Second Order
 - nth Order
- Superposition
- Non-Homogeneous Structure

Theorem 1 (Picard-Lindelöf Existence-Uniqueness)

Let the *n*-vector function f(x, y) be continuous for real x satisfying $|x - x_0| \le a$ and for all vectors y in \mathbb{R}^n satisfying $||y - y_0|| \le b$. Additionally, assume that $\partial f/\partial y$ is continuous on this domain. Then the initial value problem

$$\left\{egin{array}{l} \mathrm{y}' = \mathrm{f}(x,\mathrm{y}), \ \mathrm{y}(x_0) = \mathrm{y}_0 \end{array}
ight.$$

has a unique solution y(x) defined on $|x - x_0| \le h$, satisfying $||y - y_0|| \le b$, for some constant h, 0 < h < a.

The unique solution can be written in terms of the *Picard Iterates*

$$\mathrm{y}_{n+1}(x) = \mathrm{y}_0 + \int_{x_0}^x \mathrm{f}(t,\mathrm{y}_n(t)) dt, \quad \mathrm{y}_0(x) \equiv \mathrm{y}_0,$$

as the formula

$$\mathrm{y}(x) = \mathrm{y}_n(x) + R_n(x), \quad \lim_{n o \infty} R_n(x) = 0.$$

The formula means y(x) can be computed as the iterate $y_n(x)$ for large n.

Theorem 2 (Second Order Linear Picard-Lindelöf Existence-Uniqueness) Let the coefficients a(x), b(x), c(x), f(x) be continuous on an interval J containing $x = x_0$. Assume $a(x) \neq 0$ on J. Let g_1 and g_2 be real constants. The initial value problem

$$\left\{egin{array}{l} a(x)y''+b(x)y'+c(x)y=f(x),\ y(x_0)\ =\ g_1,\ y'(x_0)\ =\ g_2\end{array}
ight.$$

has a unique solution y(x) defined on J.

Theorem 3 (Higher Order Linear Picard-Lindelöf Existence-Uniqueness) Let the coefficients $a_0(x), \ldots, a_n(x), f(x)$ be continuous on an interval J containing $x = x_0$. Assume $a_n(x) \neq 0$ on J. Let g_1, \ldots, g_n be constants. Then the initial value problem

$$\left\{egin{array}{ll} a_n(x)y^{(n)}(x)+\dots+a_0(x)y=f(x),\ y(x_0)&=g_1,\ y'(x_0)&=g_2,\ &dots\ y^{(n-1)}(x_0)&=g_n\end{array}
ight.$$

has a unique solution y(x) defined on J.

Theorem 4 (Homogeneous Structure 2nd Order)

The homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0 has a general solution of the form

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x),$$

where c_1 , c_2 are arbitrary constants and $y_1(x)$, $y_2(x)$ are independent solutions.

Theorem 5 (Homogeneous Structure *n*th Order)

The homogeneous equation $a_n(x)y^{(n)}+\cdots+a_0(x)y=0$ has a general solution of the form

$$y_h(x)=c_1y_1(x)+\cdots+c_ny_n(x),$$

where c_1, \ldots, c_n are arbitrary constants and $y_1(x), \ldots, y_n(x)$ are independent solutions.

Theorem 6 (First Order Recipe)

Let a and b be constants, $a \neq 0$. Let r_1 denote the root of ar + b = 0 and construct its corresponding atom e^{r_1x} . Multiply the atom by arbitrary constant c_1 . Then $y = c_1 e^{r_1x}$ is the general solution of the first order equation

$$ay' + by = 0.$$

The equation ar + b = 0, called the *characteristic equation*, is found by the formal replacements $y' \rightarrow r, y \rightarrow 1$ in the differential equation ay' + by = 0.

Theorem 7 (Second Order Recipe)

Let $a \neq 0$, b and c be real constant. Then the general solution of

$$ay'' + by' + cy = 0$$

is given by the expression $y = c_1y_1 + c_2y_2$, where c_1 , c_2 are arbitrary constants and y_1 , y_2 are two atoms constructed as outlined below from the roots of the *characteristic equation*

$$ar^2 + br + c = 0.$$

The characteristic equation $ar^2 + br + c = 0$ is found by the formal replacements $y'' \rightarrow r^2, y' \rightarrow r, y \rightarrow 1$ in the differential equation ay'' + by' + cy = 0.

Construction of Atoms for Second Order

The atom construction from the roots r_1 , r_2 of $ar^2 + br + c = 0$ is based on Euler's theorem below, organized by the sign of the discriminant $D = b^2 - 4ac$.

 $egin{aligned} D > 0 \ (ext{Real distinct roots } r_1
eq r_2) & y_1 = e^{r_1 x}, \ y_2 = e^{r_2 x}. \ D = 0 \ (ext{Real equal roots } r_1 = r_2) & y_1 = e^{r_1 x}, \ y_2 = x e^{r_1 x}. \ D < 0 \ (ext{Conjugate roots } r_1 = \overline{r}_2 = A + iB) & y_1 = e^{Ax} \cos(Bx), \ y_2 = e^{Ax} \sin(Bx). \end{aligned}$

Theorem 8 (Euler's Theorem)

The atom $y = x^k e^{Ax} \cos(Bx)$ is a solution of ay'' + by' + cy = 0 if and only if $r_1 = A + iB$ is a root of the characteristic equation $ar^2 + br + c = 0$ and $(r - r_1)^k$ divides $ar^2 + br + c$.

Valid also for sin(Bx) when B > 0. Always, $B \ge 0$. For second order, only k = 1, 2 are possible.

Euler's theorem is valid for any order differential equation: replace the equation by $a_n y^{(n)} + \cdots + a_0 y = 0$ and the characteristic equation by $a_n r^n + \cdots + a_0 = 0$.

Theorem 9 (Recipe for nth Order)

Let $a_n \neq 0, ..., a_0$ be real constants. Let $y_1, ..., y_n$ be the list of n distinct atoms constructed by Euler's Theorem from the n roots of the characteristic equation

 $a_nr^n+\cdots+a_0=0.$

Then y_1, \ldots, y_n are independent solutions of

$$a_ny^{(n)}+\cdots+a_0y=0$$

and all solutions are given by the general solution formula

$$y=c_1y_1+\dots+c_ny_n,$$

where c_1, \ldots, c_n are arbitrary constants.

The characteristic equation is found by the formal replacements $y^{(n)} \rightarrow r^n, \dots, y' \rightarrow r$, $y \rightarrow 1$ in the differential equation.

Theorem 10 (Superposition)

The homogeneous equation a(x)y''+b(x)y'+c(x)y=0 has the superposition property:

If y_1 , y_2 are solutions and c_1 , c_2 are constants, then the combination $y(x) = c_1 y_1(x) + c_2 y_2(x)$ is a solution.

The result implies that *linear combinations of solutions are also solutions*.

The theorem applies as well to an *n*th order linear homogeneous differential equation with continuous coefficients $a_0(x), \ldots, a_n(x)$.

The result can be extended to more than two solutions. If y_1, \ldots, y_k are solutions of the differential equation, then all linear combinations of these solutions are also solutions.

The solution space of a linear homogeneous nth order linear differential equation is a subspace S of the vector space V of all functions on the common domain J of continuity of the coefficients.

Theorem 11 (Non-Homogeneous Structure 2nd Order)

The non-homogeneous equation a(x)y'' + b(x)y' + c(x)y = f(x) has general solution

$$y(x) = y_h(x) + y_p(x),$$

where

- $y_h(x)$ is the general solution of the homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0, and
- $y_p(x)$ is a particular solution of the nonhomogeneous equation a(x)y'' + b(x)y' + c(x)y = f(x).

The theorem is valid for higher order equations: the general solution of the non-homogeneous equation is $y = y_h + y_p$, where y_h is the general solution of the homogeneous equation and y_p is any particular solution of the non-homogeneous equation.

An Example

For equation y'' - y = 10, the homogeneous equation y'' - y = 0 has general solution $y_h = c_1 e^x + c_2 e^{-x}$. Select $y_p = -10$, an equilibrium solution. Then $y = y_h + y_p = c_1 e^x + c_2 e^{-x} - 10$.

Theorem 12 (Non-Homogeneous Structure nth Order)

The non-homogeneous equation $a_n(x)y^{(n)} + \cdots + a_0(x)y = f(x)$ has general solution

$$y(x) = y_h(x) + y_p(x),$$

where

- $y_h(x)$ is the general solution of the homogeneous equation $a_n(x)y^{(n)}+\dots+a_0(x)y=0,$ and
- $y_p(x)$ is a particular solution of the nonhomogeneous equation $a_n(x)y^{(n)}+\dots+a_0(x)y=f(x).$