
Math 2250 Maple Project 9, S2009. Tacoma Narrows.

NAME _______________________ CLASSTIME ________ VERSION A-K or L-Z

Circle the version - see problem L9.1. There are three (3) problems in

this project. Please answer the questions A, B, C , ... associated with

each problem. The original worksheet "2250mapleL7-S2009.mws" is a

template for the solution; you must fill in the code and all comments.

Sample code can be copied with the mouse. Use pencil freely to annotate

the worksheet and to clarify the code and figures.

The problem headers for the S2009 revision of David Eyre’s project

(original was year 2000).

__________L9.1. NONLINEAR MCKENNA MODELS

__________L9.2. MCKENNA NON-HOOKES LAW CABLE MODEL.

L9.1. PROBLEM (NONLINEAR MCKENNA MODELS)

There are three (3) parts L9.1A to L9.1C to complete. Mostly, this is

mouse copying. Retyping the maple code by hand is not recommended.

NONLINEAR TORSIONAL MODEL WITH GEOMETRY INCLUDED.

Consider the nonlinear, forced, damped oscillator equation for torsional

motion, with bridge geometry included,

x’’ + 0.05 x’ + 2.4 sin(x)cos(x) = 0.06 cos (12 t/10) ,

x(0) = x0, x’(0) = v0

and its corresponding linearized equation

x’’ + 0.05 x’ + 2.4 x = 0.06 cos (12 t/10) ,

x(0) = x0, x’(0) = v0.

The spring-mass system parameters are m=1, c = 0.05, k = 2.4, w = 1.2 ,

F = 0.06. Maple code used to solve and plot the solutions appears below.

# Use "copy as maple text" for maple 6+.

x0:=0: a:=200: b:=300: # For part A. Change it for part B!

v0:=0: m:=1: F := 0.06: w := 1.2: m:=1: c:= 0.05: k:= 2.4:

with(DEtools): opts:=stepsize=0.1:

deLinear:= m*diff(x(t),t,t) + c*diff(x(t),t) + k*x(t) = F*cos(w*t):

IClinear:=[[x(0)=x0,D(x)(0)=v0]]:

DEplot(deLinear,x(t),t=a..b,IClinear,opts,title=’Linear’);

deNonLinear:= m*diff(x(t),t,t) + c*diff(x(t),t) +

k*sin(x(t))*cos(x(t)) = F*cos(w*t):

ICnonlinear:=[[x(0)=x0,D(x)(0)=v0]]:

DEplot(deNonLinear,x(t),t=a..b,ICnonlinear,opts,title=’NonLinear’);

9.1A. Let x0=0, v0=0. Plot the solutions of the linear and

nonlinear equations from t=200 to t=300. These plots represent

the steady state solutions of the two equations.

9.1B. Let x0=1.2, v0=0. Plot the solutions of the linear and
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nonlinear equations from t=220 to t=320. These plots represent

the steady state solutions of the two equation, with new

starting value x0=1.2. [You must modify line 1 of the maple

code!]

The two linear plots in A and B have to be identical to the

plot of xss(t). The reason is the superposition formula (see

E&P) x(t)=xh(t)+xss(t), even though the homogeneous solution

xh(t) is different for the two plots. This is because xh(t)

has limit zero at t=infinity.

9.1C. Determine the ratio of the apparent amplitudes (a number > 1)

for the nonlinear plots in A and B. Do "large sustained

oscillations" appear in the plot of the nonlinear

steady-state?

>

> #L9.1-A

> #L9.1-B

> #L9.1-C

>

L9.2. PROBLEM ( MCKENNA’S NON-HOOKE’S LAW CABLE MODEL)

There are three (3) parts L9.2A to L9.2C to complete. Mostly, this is

mouse copying. Retyping the maple code by hand is not recommended.

The model of McKenna studies the bridge with a nonlinear, forced, damped

oscillator equation for torsional motion that accounts for the

non-Hooke’s law cables coupled to the equations for vertical motion. The

equations in this case couple the torsional motion with the vertical

motion. The equations are:

x’’ + c x’ - k G(x,y) = F sin wt, x(0) = x0, x’(0) = x1,

y’’ + c y’ + (k/3) H(x,y) = g , y(0) = y0, y’(0) = y1,

where x(t) is the torsional motion and y(t) is the vertical motion. The

functions G(x,y) and H(x,y) are the models of the force generated by the

cable when it is contracted and stretched. Below is sample code for

writing the differential equations and for plotting the solutions. It is

ready to copy with the mouse.

with(DEtools):

w := 1.3: F := 0.05: f(t) := F*sin(w*t):

c := 0.01: k1 := 0.2: k2 := 0.4: g := 9.8: L := 6:

STEP:=x->piecewise(x<0,0,1):

fp(t) := y(t)+(L*sin(x(t))):

fm(t) := y(t)-(L*sin(x(t))):

Sm(t) := STEP(fm(t))*fm(t):

Sp(t) := STEP(fp(t))*fp(t):

sys := {

diff(x(t),t,t) + c*diff(x(t),t) - k1*cos(x(t))*(Sm(t)-Sp(t))=f(t),

diff(y(t),t,t) + c*diff(y(t),t) + k2*(Sm(t)+Sp(t)) = g}:

ic := [[x(0)=0, D(x)(0)=0, y(0)=27.25, D(y)(0)=0]]:

vars:=[x(t),y(t)]:

opts:=stepsize=0.1:

2



DEplot(sys,vars,t=0..300,ic,opts,scene=[t,x]);

The amazing thing that happens in this simulation is that the large

vertical oscillations take all the tension out of the springs and they

induce large torsional oscillations.

L9.2A. TORSIONAL OSCILLATION PLOT. Get the sample code above to produce

the plot of x(t) [that’s what scene=[t,x] means].

L9.2B. ROADWAY TILT ANGLE. Estimate the number of degrees the roadway

tilts based on the plot. Recall that x in the plot is reported

in radians. Comment on the agreement of this result with

historical data and the video evidence in the film clip.

Tip: Average the five largest amplitudes in the plot to find an

average maximum amplitude for t=0 to t=300. Convert to degrees

using Pi radians = 180 degrees. The film clip shows roadway

maximum tilt of 30 to 45 degrees, approximately.

L9.2C. VERTICAL OSCILLATION PLOT. Modify the DEplot code to scene=[t,y]

and plot the oscillation y(t) on t=0 to t=300. The plot is

supposed to show 30-foot vertical oscillations along the roadway

that dampen to 7-foot vertical oscillations after 300 seconds.

The agreement between these oscillation results and the

historical data for Tacoma Narrows, especially the visual data

present in the film clip of the bridge disaster, should be clear

from the plots. This is your only answer check for the plot

results.

>

> #L9.2-A Torsional plot t-versus-x

> #L9.2-b Roadway tilt angle estimate in degrees + comments.

> #L9.2-C Vertical plot t-versus-y.

>
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