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5.4 Independence, Span and Basis

The technical topics of independence, dependence and span apply to the
study of Euclidean spaces R2, R3, . . . , Rn and also to the continuous
function space C(E), the space of differentiable functions C1(E) and its
generalization Cn(E), and to general abstract vector spaces.

Basis and General Solution

The term basis has been introduced earlier for systems of linear algebraic
equations. To review, a basis is obtained from the vector general solution
of Ax = 0 by computing the partial derivatives ∂t1 , ∂t2 , . . . of x, where t1,
t2, . . . is the list of invented symbols assigned to the free variables, which
were identified in rref(A). The partial derivatives are special solutions
to Ax = 0. Knowing these special solutions is sufficient for writing out
the general solution. In this sense, a basis is an abbreviation or shortcut
notation for the general solution.

Deeper properties have been isolated for the list of special solutions ob-
tained from the partial derivatives ∂t1 , ∂t2 , . . . . The most important
properties are span and independence.

Independence and Span

A list of vectors v1, . . . , vk is said to span a vector space V provided V
is exactly the set of all linear combinations

v = c1v1 + · · · + ckvk.

The notion originates with the general solution v of a matrix system
Av = 0, where the invented symbols t1, t2, . . . are the constants c1, . . . ,
ck and the vector partial derivatives ∂t1v, . . . , ∂tkv are the symbols v1,
. . . , vk.

Vectors v1, . . . , vk are said to be independent provided each linear
combination v = c1v1 + · · · + ckvk is represented by a unique set of
constants c1, . . . , ck. See pages 301 and 304 for independence tests.

A basis of a vector space V is defined to be an independent set v1, . . . ,
vk that additionally spans V .

The Spaces Rn

The vector space Rn of n-element fixed column vectors (or row vectors)
is from the view of applications a storage system for organization of nu-

merical data sets that happens to be endowed with an algebraic toolkit.
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The organizational scheme induces a data structure onto the numerical
data set. In particular, whether needed or not, there are pre-defined
operations of addition (+) and scalar multiplication (·) which apply to
fixed vectors. The two operations on fixed vectors satisfy the closure

law and in addition obey the eight algebraic vector space properties. We
view the vector space V = Rn as the data set consisting of data item
packages. The toolkit is the following set of algebraic properties.

Closure The operations ~X + ~Y and k ~X are defined and result in
a new vector which is also in the set V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative
Vector ~0 is defined and ~0 + ~X = ~X zero
Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar
multiply

k( ~X + ~Y ) = k ~X + k~Y distributive I
(k1 + k2) ~X = k1

~X + k2
~X distributive II

k1(k2
~X) = (k1k2) ~X distributive III

1 ~X = ~X identity

.
The 8 Properties

+

Toolkit

Operations

Data
Set

Figure 9. A Data
Storage System.
A vector space is a data set
of data item packages plus a
storage system which
organizes the data. A toolkit
is provided consisting of
operations + and · plus 8
algebraic vector space
properties.

Fixed vectors and the toolkit. Scalar multiplication is a toolkit
item for fixed vectors because of unit systems, like the fps, cgs and mks
systems. We might originally record a data set in a fixed vector in units
of meters and later find out that it should be in centimeters; multiplying
the elements of a vector by the conversion factor k = 100 scales the
data set to centimeters.

Addition of fixed vectors occurs in a variety of calculations, which in-
cludes averages, difference quotients and calculus operations like integra-
tion.

Plotting and the toolkit. The data set for a plot problem consists
of the plot points in R2, which are the dots for the connect-the-dots
graphic. Assume the function y(x) to be plotted comes from a differential
equation like y′ = f(x, y), then Euler’s numerical method could be used
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for the sequence of dots in the graphic. In this case, the next dot is
represented as v2 = v1 + E(v1). Symbol v1 is the previous dot and
symbol E(v1) is the Euler increment. We define

v1 =

(

x0

y0

)

, E(v1) = h

(

1
f(x0, y0)

)

,

v2 = v1 + E(v1) =

(

x0 + h
y0 + hf(x0, y0)

)

.

A step size h = 0.05 is commonly used. The Euler increment E(v1) is
given as scalar multiplication by h against an R2-vector which involves
evaluation of f at the previous dot v1.

In summary, the dots for the graphic of y(x) form a data set in the
vector space R2. The dots are obtained by algorithm rules, which are
easily expressed by vector addition (+) and scalar multiplication (·). The
8 properties of the toolkit were used in a limited way.

Digital Photographs. A digital photo consists of many pixels of dif-
ferent colors arranged in a two dimensional array. Structure can be
assigned to the photo by storing the digital data in a matrix A of size
n×m. Each entry of A is an integer which specifies the color properties
of a given pixel.

The set V of all n×m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage
system for photos. However, the algebraic toolkit for V is a convenient
way to express operations on photos. We give one illustration: breaking
a photo into RGB (Red, Green, Blue) separation photos, in order to
make separation transparencies. One easy way to do this is to code each
entry of A as aij = rij + gijx + bijx

2 where is x is some convenient
base. The integers rij, gij , bij represent the amount of red, green and
blue present in the pixel with data aij . Then A = R + Gx + Bx2 where
R = [rij ], G = [gij ], B = [bij] are n×m matrices that represent the color
separation photos. These monochromatic photos are superimposed as
color transparencies to duplicate the original photograph.

Printing machinery used to employ separation negatives and multiple
printing runs to make book photos. The advent of digital printers
and better, less expensive technologies has made the separation process
nearly obsolete. To help the reader understand the historical events, we
record the following quote from Sam Wang5:

I encountered many difficulties when I first began making gum prints:
it was not clear which paper to use; my exposing light (a sun lamp) was

5Sam Wang teaches photography and art with computer at Clemson University
in South Carolina. His photography degree is from the University of Iowa (1966).
Reference: A Gallery of Tri-Color Prints, by Sam Wang
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highly inadequate; plus a myriad of other problems. I was also using
panchromatic film, making in–camera separations, holding RGB filters
in front of the camera lens for three exposures onto 3 separate pieces of
black and white film. I also made color separation negatives from color
transparencies by enlarging in the darkroom. Both of these methods
were not only tedious but often produced negatives very difficult to
print — densities and contrasts that were hard to control and working
in the dark with panchromatic film was definitely not fun. The fact
that I got a few halfway decent prints is something of a small miracle,
and represents hundreds of hours of frustrating work! Digital negatives
by comparison greatly simplify the process. Nowadays (2004) I use
color images from digital cameras as well as scans from slides, and the
negatives print much more predictably.

Function Spaces

The premier storage systems used for applications involving ordinary or
partial differential equations are function spaces. The data item packages
for differential equations are their solutions, which are functions, or in
an applied context, a graphic defined on a certain graph window. They
are not column vectors of numbers.

Numerical researchers in differential equations might view a function
as being a fixed vector. Their unique viewpoint is that a function is a
graph and a graph is determined by so many dots, which are practically
obtained by sampling the function y(x) at a reasonably dense set of x-
values. The trouble with this viewpoint is that two different functions
may need different sampling rates to properly represent their graphic.
The result is that the two functions might need data storage systems of
different dimensions, e.g., f needs its sample set in R200 and g needs its
sample set in R400. The absence of a universal numerical data storage
system for sampled functions is what initially drove mathematicians and
scientists to consider a storage system like the set of all functions.

Novices often suggest a way around the lack of a universal numerical
data storage system for sampled functions: develop a theory of column

vectors with infinitely many components. It may help you to think of
any function f as an infinitely long column vector, with one entry f(t)
for each possible sample t, e.g.,

f =









...
f(t)

...









.

It is not clear how to order or address the entries of such a column
vector: at algebraic stages it hinders. Can computers store infinitely
long column vectors? The easiest path through the algebra is to deal
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exactly with functions and function notation. Still, there is something
attractive about changing from finite column vectors with entries f1,
. . . , fn to function notation f(1), . . . , f(n) and then finally to f(t) and
a continuous variable t valid for all real numbers.

The vector space V of all functions on a set E. The rules for
function addition and scalar multiplication come from college algebra
and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

The rules define addition and scalar multiplication of functions and
immediately it is clear that the closure law for a vector space holds.
Routine but long justifications are required to show that V under the
above rules for addition and scalar multiplication is a vector space. This
means that the 8-property toolkit is available:

Closure The operations f + g and kf are defined and result in a
new function which is also in the set V of all functions on
the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative

Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in ap-
plied literature as the storage systems for solutions to differential equa-
tions and solutions of related models.

The Space C(E). Let E be an open bounded set, for example E =
{x : 0 < x < 1} on the real line. The set C(E) is the subset of the
set V of all functions on E obtained by restricting the function to be
continuous. Because sums and scalar multiples of continuous functions
are continuous, then C(E) is a subspace of V and a vector space in its
own right.

The Space C1(E). The set C1(E) is the subset of the set C(E)
of all continuous functions on E obtained by restricting the function
to be continuously differentiable. Because sums and scalar multiples of
continuously differentiable functions are continuously differentiable, then
C1(E) is a subspace of C(E) and a vector space in its own right.
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The Space Ck(E). The set Ck(E) is the subset of the set C(E) of
all continuous functions on E obtained by restricting the function to be
k times continuously differentiable. Because sums and scalar multiples
of k times continuously differentiable functions are k times continuously
differentiable, then Ck(E) is a subspace of C(E) and a vector space in
its own right.

Solution Space of a Differential Equation. The differential
equation y′′ − y = 0 has general solution y = c1e

x + c2e
−x, which means

that the set S of all solutions of the differential equation consists of
all possible linear combinations of the two functions ex and e−x. The
latter are functions in C2(E) where E can be any interval on the x-axis.
Therefore, S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous differential equation, of any order,
has a solution set S which is a vector space in its own right.

Other Vector Spaces

The number of different vector spaces used as data storage systems in
scientific literature is finite, but growing with new discoveries. There
is really no limit to the number of different settings possible, because
creative individuals are able to invent new ones.

Here is an example of how creation begets new vector spaces. Consider
the problem y′ = 2y + f(x) and the task of storing data for the plotting
of an initial value problem with initial condition y(x0) = y0. The data
set V suitable for plotting consists of fixed vectors

v =







x0

y0

f






.

A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The
fixed vectors are not numerical vectors in R3, but some hybrid of vectors
in R2 and the space of continuous functions C(E) where E is the real
line.

It is relatively easy to come up with definitions of vector addition and
scalar multiplication on V . The closure law holds and the eight vector
space properties can be routinely verified. Therefore, V is an abstract
vector space, unlike any found in this text. We reiterate:
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An abstract vector space is a set V and two operations of

+ and · such that the closure law holds and the eight

algebraic vector space properties are satisfied.

The paycheck for having recognized a vector space setting in an applica-
tion is clarity of exposition and economy of effort in details. Algebraic
details in R2 can often be transferred unchanged to an abstract vector
space setting, line for line, to obtain the details in the more complex
setting.

Independence and Dependence

The subject of independence applies to coordinate spaces Rn, function
spaces and general abstract vector spaces. Introduced here are defini-
tions for low dimensions, the geometrical meaning of independence, basic
algebraic tests for independence, and generalizations to abstract vector
spaces.

Definition 3 (Independence)
Vectors v1, . . . , vk are called independent provided each linear combi-
nation v = c1v1 + · · ·+ ckvk is represented by a unique set of constants
c1, . . . , ck.

Independence and Dependence for Two Vectors. Two vec-
tors v1, v2 in R2 are said to be independent provided neither is the
zero vector and one is not a scalar multiple of the other. Graphically,
this means v1 and v2 form the edges of a non-degenerate parallelogram.

v2

v1 Figure 10. Independent vectors.
Two nonzero nonparallel vectors v1, v2 form
the edges of a parallelogram. A vector
v = c1v1 + c2v2 lies interior to the
parallelogram if the scaling constants satisfy
0 < c1 < 1, 0 < c2 < 1.

Algebraic independence test for two vectors. Given two vectors
v1, v2, construct the system of equations in unknowns c1, c2

c1v1 + c2v2 = 0.

Solve the system for c1, c2. The two vectors are independent if and
only if the system has the unique solution c1 = c2 = 0.

The test is equivalent to the statement that v = x1v1 + x2v2 holds for
one unique set of constants x1, x2. The details: if v = a1v1 + a2v2

and also v = b1v1 + b2v2, then subtraction of the two equations gives
(a1 − b1)v1 + (a2 − b2)v2 = 0. This is a relation c1v1 + c2v2 = 0
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with c1 = a1 − b1, c2 = a2 − b2. Independence means c1 = c2 = 0, or
equivalently, a1 = b1, a2 = b2, giving that v = x1v1 + x2v2 holds for
exactly one unique set of constants x1, x2.

b

a

a + b

Figure 11. The parallelogram rule.
Two nonzero vectors a, b are added by the
parallelogram rule: a + b has tail matching the
joined tails of a, b and head at the corner of
the completed parallelogram.

Why does the test work? Vector v = c1v1 + c2v2 is formed by the
parallelogram rule, Figure 11, by adding the scaled vectors a = c1v1, b =
c2v2. The zero vector v = 0 can be obtained from nonzero nonparallel
vectors v1, v2 only if the scaling factors c1, c2 are both zero.

Dependence of two vectors. Define vectors v1, v2 in R2 to be de-
pendent provided they are not independent. This means one of v1,
v2 is the zero vector or else v1 and v2 lie along the same line: the

two vectors cannot form a parallelogram. Algebraic detection of depen-
dence is by failure of the independence test: after solving the system
c1v1 + c2v2 = 0, one of the two constants c1, c2 is nonzero.

Independence and Dependence of Two Vectors in an Ab-

stract Space. The algebraic definition used for R2 is invoked to de-
fine independence of two vectors in an abstract vector space. An imme-
diate application is in R3, where all the geometry discussed above still
applies. In other spaces, the geometry vanishes, but algebra remains a
basic tool.

Independence test for two vectors v1, v2. In an abstract

vector space V , form the equation

c1v1 + c2v2 = 0.

Solve this equation for c1, c2. Then v1, v2 are independent

in V only if the system has unique solution c1 = c2 = 0.

It is not obvious how to solve for c1, c2 in the algebraic independence test
in a function space. This algebraic problem is a subject of the examples.

Illustration. Two column vectors are tested for independence by form-
ing the system of equations c1v1 + c2v2 = 0, e.g,

c1

(

−1
1

)

+ c2

(

2
1

)

=

(

0
0

)

.

This is a homogeneous system Ac = 0 with

A =

(

−1 2
1 1

)

, c =

(

c1

c2

)

.
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The system Ac = 0 can be solved for c by rref methods. Because
rref(A) = I, then c1 = c2 = 0, which verifies independence.

If A is square and rref(A) = I, then A−1 exists. The equation Ac =
0 has solution c = A−10 = 0, which means c1 = c2 = 0. Theory
says A−1 = adj(A)/det(A) exists precisely when det(A) 6= 0, therefore
independence is verified independently of rref methods by the 2 × 2
determinant computation det(A) = −3 6= 0.

Remarks about det(A) apply to independence testing for any two vectors,
but only in case the system of equations Ac = 0 is square. For instance,
in R3, the homogeneous system

c1







−1
1
0






+ c2







2
1
0






=







0
0
0







has vector-matrix form Ac = 0 with 3×2 matrix A. There is no chance
to use determinants. We remark that rref methods apply as before
to verify independence.

Independence and Dependence for Three Vectors. Follow-
ing the ideas of the preceding paragraph, three vectors in R3 are said to
be independent provided none of them are the zero vector and they form
the edges of a non-degenerate parallelepiped of positive volume. Such
vectors are called a triad. In the special case of all pairs orthogonal (the
vectors are 90◦ apart) they are called an orthogonal triad.

v2

v1

v3
Figure 12. Independence of three vectors.
Vectors v1, v2, v3 form the edges of a parallelepiped.
Vectors v = c1v1 + c2v2 + c3v3 satisfying 0 < ci < 1,
i = 1, 2, 3, are located interior to the parallelepiped.

Independence test for three vectors. Given three vectors v1, v2,
v3, construct the system of equations in unknowns c1, c2, c3

c1v1 + c2v2 + c3v3 = 0.

Solve the system for c1, c2, c3. The vectors are independent if and only
if the system has unique solution c1 = c2 = c3 = 0.

Why does the test work? The vector v = c1v1+c2v2+c3v3 is formed
by two applications of the parallelogram rule: first add the scaled vectors
c1v1, c2v2 and secondly add the scaled vector c3v3 to the resultant. The
zero vector v = 0 can be obtained from a vector triad v1, v2, v3 only if
the scaling factors c1, c2, c3 are all zero.

Dependence of three vectors. Given vectors v1, v2, v3, they are
dependent if and only if they are not independent. Then one of
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them is the zero vector or else one of them is in the plane of the other
two, or else two of them lie along the same line. In short, three dependent
vectors in R3 cannot be the edges of a parallelepiped. Algebraic detection
of dependence is by failure of the independence test: after solving the
system c1v1 + c2v2 + c3v3 = 0, one of the three constants c1, c2, c3 is
nonzero6.

Independence in an Abstract Vector Space. Let v1, . . . , vk

be a finite set of vectors in an abstract vector space V . The set is
independent if and only if the system of equations in unknowns c1,
. . . , ck

c1v1 + · · · + ckvk = 0

has unique solution c1 = · · · = ck = 0.

Independence means that each linear combination v = c1v1 + · · ·+ ckvk

is represented by a unique set of constants c1, . . . , ck.

A set of vectors is called dependent if and only if it is not independent.
This means that the system of equations in variables c1, . . . , ck has a
solution with at least one variable nonzero. In particular, any finite set of
vectors containing the zero vector 0 has to be dependent, and two vectors
are dependent precisely when one is a scalar multiple of the other.

Independence and Dependence Tests

Recorded here are a number of useful algebraic tests to determine in-
dependence or dependence of a finite list of vectors. The first two tests
are designed for fixed vectors, while the remaining ones are designed for
vector spaces of functions.

Rank Test. In the vector space Rn, the key to detection of indepen-
dence is zero free variables, or nullity zero, or equivalently, maximal
rank. The test is justified from the formula nullity(A) + rank(A) = k,
where k is the column dimension of A.

Theorem 13 (Rank-Nullity Test)
Let v1, . . . , vk be k column vectors in Rn and let A be the augmented
matrix of these vectors. The vectors are independent if rank(A) = k and
dependent if rank(A) < k. The conditions are equivalent to nullity(A) =
0 and nullity(A) > 0, respectively.

6In practical terms, there is at least one free variable, or equivalently, appearing
in the parametric solution is at least one parameter t1, t2, . . . .
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Determinant Test. In the unusual case when the system arising in
the independence test can be expressed as Ac = 0 and A is square, then
det(A) = 0 detects dependence, and det(A) 6= 0 detects independence.
The reasoning is based upon the formula A−1 = adj(A)/det(A), valid
exactly when det(A) 6= 0.

Theorem 14 (Determinant Test)
Let v1, . . . , vn be n column vectors in Rn and let A be the augmented
matrix of these vectors. The vectors are independent if det(A) 6= 0 and
dependent if det(A) = 0.

Sampling Test for Functions. Let f1, . . . , fk be functions on a
domain D. Let V be the vector space of all functions on D with the usual
scalar multiplication and addition rules learned in college algebra. Ad-
dressed here is the question of how to test independence and dependence
of f1, . . . , fk in V . The relation

c1f1 + c2f2 + · · · + ckfk = 0

means

c1f1(x) + c2f2(x) + · · · + ckfk(x) = 0, x in D.

An idea how to solve for c1, . . . , ck arises by sampling, which means k
relations are obtained by choosing k values for x, say x1, . . . , xk. The
equations arising are

c1f1(x1) + c2f2(x1) + · · · + ckfk(x1) = 0,
c1f1(x2) + c2f2(x2) + · · · + ckfk(x2) = 0,

...
... · · ·

...
...

c1f1(xk) + c2f2(xk) + · · · + ckfk(xk) = 0.

The unknowns are c1, . . . , ck and the coefficient matrix is

A =













f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
... · · ·

...
f1(xk) f2(xk) · · · fk(xk)













The system Ac = 0 has unique solution c = 0, proving f1, . . . , fk

independent, provided det(A) 6= 0. It is not true that independence of
the functions implies det(A) 6= 0; it depends on the values used for the
sampling.

Vandermonde Determinant. Choosing the functions in the sampling

test to be the usual polynomial basis f1(x) = 1, f2(x) = x, . . . , fk(x) =
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xk−1 gives the Vandermonde matrix

V (x1, . . . , xk) =













1 x1 · · · xk−1
1

1 x2 · · · xk−1
2

...
... · · ·

...

1 xk · · · xk−1
k













.

Let us prove that det(V ) 6= 0 for distinct values x1, . . . , xk, by estab-
lishing the identity

det(V (x1, . . . , xk)) = Π
i<j

(xj − xi).

The identity is proved from determinant properties, as follows. Let
f(x) = det(V (x, x2, . . . , xk). Duplicate rows in a determinant cause it
to have zero value, therefore the polynomial f(x) has roots x2, . . . , xk.
The factor theorem of college algebra applies to give the formula

f(x) = c(x2 − x) · · · (xk − x),

where c is a constant. Cofactor expansion along the first row and match-
ing of the coefficient of (−x)k shows that c = det(V (x2, . . . , xk) [we used
(−1)k+1+1(−1)k = 1]. Then

det(V (x1, x2, . . . , xk)) = det(V (x2, . . . , xk))Π
k
j=2(xj − x1).

The relation is solved recursively to give the claimed formula. For ex-
ample,

det(V (x1, x2, x3)) = det(V (x2, x3))(x2 − x1)(x3 − x1)
= [det(V (x3))(x3 − x2)](x2 − x1)(x3 − x1)
= (x3 − x2)(x2 − x1)(x3 − x1).

Wronskian Test for Functions. Given functions f1, . . . , fn each
differentiable n − 1 times on an interval a < x < b, the Wronskian
determinant 7 is defined by the relation

W (f1, . . . , fn)(x) = det













f1(x) f2(x) · · · fn(x)
f ′

1(x) f ′

2(x) · · · f ′

n(x)
...

... · · ·
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)













.

Theorem 15 (Wronskian Test)
Let functions f1, . . . , fn be differentiable n−1 times on interval a < x < b.
Then W (f1, . . . , fn)(x0) 6= 0 for some x0 in (a, b) implies f1, . . . , fn are
independent functions in the vector space V of all functions on (a, b).

7Named after mathematician Jósef Maria Hoëné Wronski (1778-1853), born in
Poland.
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Proof: The objective of the proof is to solve the equation

c1f1 + c2f2 + · · · + cnfn = 0

for the constants c1, . . . , cn, showing they are all zero. The idea of the proof,
attributed to Wronski, is to differentiate the above equation n − 1 times, then
substitute x = x0 to obtain a homogeneous n × n system Ac = 0 for the
components c1, . . . , cn of the vector c. Because det(A) = W (f1, . . . , fn)(x0) 6=
0, Cramer’s rule applies to show that c = 0, completing the proof.
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5.5 Basis, Dimension and Rank

The topics of basis, dimension and rank apply to the study of Euclidean
spaces, continuous function spaces, spaces of differentiable functions and
general abstract vector spaces.

A basis for a vector space V is defined to be an independent set of vectors
whose finite linear combinations span V . If the set of independent vectors
is finite, then V is called finite dimensional and otherwise it is called
infinite dimensional. The dimension of V is the number of vectors
in a basis. Because of the following result, for finite dimensional V , the
term dimension is well-defined.

Theorem 16 (Dimension)
If a vector space V has a basis v1, . . . , vp and also a basis u1, . . . , uq,
then p = q.

Proof: Assume the hypotheses true and the conclusion false, in order to reach
a contradiction. Let the larger basis be listed first, p > q. Because u1, . . . , uq

is a basis of V , then there are coefficients {aij} such that

vi = ai1u1 + · · · + aiquq, 1 ≤ i ≤ p.

Let A = [aij ] be the p× q matrix of coefficients. Because p > q, then rref (AT )
has at most q leading variables and at least p − q > 0 free variables. Then the
q × p homogeneous system ATx = 0 has infinitely many solutions. Let x be a
nonzero solution of ATx = 0. The equation ATx = 0 means

∑p

i=1
aijxi = 0

for 1 ≤ j ≤ p, giving the dependence relation

∑p

i=1
xivi =

∑p

i=1
xi

∑q

j=1
aijuj

=
∑q

j=1

∑p

i=1
aijxiuj

=
∑q

j=1
(0)uj

= 0

The independence of v1, . . . , vp is contradicted, completing the proof.

Euclidean Spaces. The space Rn has a standard basis consisting of
the columns of the n×n identity matrix, therefore Rn has dimension n.
More generally,

Theorem 17 (Bases in Rn)
Any basis of Rn has exactly n independent vectors. Further, any list of
n + 1 or more vectors in Rn is dependent.

Polynomial Spaces. The vector space of all polynomials p(x) = p0 +
p1x + p2x

2 has dimension 3, because a basis is 1, x, x2 in this func-
tion space. Formally, the basis elements are obtained from the general
solution p(x) by partial differentiation on the symbols p0, p1, p2.

Differential Equations. The equation y′′ + y = 0 has general solution
y = c1 cos x + c2 sin x. Therefore, the formal partial derivatives ∂c1, ∂c2
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applied to the general solution y give a basis cos x, sin x. The solution
space of y′′ + y = 0 has dimension 2.

Similarly, y′′′ = 0 has a solution basis 1, x, x2 and therefore its solution
space has dimension 3. Generally, an nth order linear homogeneous
scalar differential equation has solution space V of dimension n, and
an n × n linear homogeneous system y′ = Ay has solution space V of
dimension n. A general procedure for finding a basis for a differential
equation:

Let a differential equation have general solution expressed

in terms of arbitrary constants c1, c2, . . . , then a basis is

found by taking the partials ∂c1 , ∂c2 , . . . .

Largest Subset of Independent Vectors

Let vectors v1, . . . , vk be given in Rn. The subset V of Rn consisting
of all linear combinations v = c1v1 + · · ·+ ckvk is closed under addition
and scalar multiplication. In short, the set V is a subspace of Rn.

Discussed here are efficient methods for finding a basis for V . Equiva-
lently, we find a largest subset of independent vectors from the vectors
v1, . . . , vk. Such a largest subset spans V and is independent, therefore
it is a basis for V .

An Iterative Method. A largest independent subset can be iden-
tified as vi1 , . . . , vip for some distinct subscripts i1, . . . , ip. We describe
how to find such subscripts. Let i1 be the first subscript such that
vi1 6= 0. Define i2 to be the first subscript greater than i1 such that

rank(aug(v1, . . . ,vi1)) < rank(aug(v1, . . . ,vi2)).

The process terminates if there is no such i2 > i1. Otherwise, proceed
in a similar way to define i3, i4, . . ., ip. The rank test uses the basic
tools of swap, combination and multiply. An efficient shortcut is the
following:

The rank of aug(v1,v2, . . . ,viq) is the same as the rank of

aug(vi1 ,vi2 , . . . ,viq).

The shortcut allows the rref tools to be applied to smaller matrices, to
the same effect.

Why does it work? Because each column added to the augmented matrix
which increases the rank cannot be a linear combination of the preceding
columns. In short, that column is independent of the preceding columns.
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Pivot Column Method. A column j of A is called a pivot column
provided rref(A) has a leading one in column j. The leading ones in
rref(A) belong to consecutive columns of the identity matrix I.

Lemma 1 (Pivot Columns and Dependence) A non-pivot column of A
is a linear combination of the pivot columns of A.

Proof: Let column j of A be non-pivot. Consider the homogeneous system
Ax = 0. The pivot columns subscripts determine the leading variables and
the remaining column subscripts determine the free variables. Define xj = 1.
Define all other free variables to be zero. The lead variables are now determined
and the resulting nonzero vector x satisfies the homogeneous equation Ax = 0.
Translating this equation into a linear combination of columns says that column
j is a linear combination of the pivot columns of A.

Theorem 18 (Independence)
The pivot columns of a matrix A are linearly independent.

Proof: Let v1, . . . , vk be the columns of A and let i1, . . . , ip be the pivot
columns of A. Independence is proved by solving the system of equations

c1vi1 + · · · + cpvip
= 0

for the constants c1, . . . , cp, eventually verifying they are all zero. The tool
used to solve for the constants is the formula

A = E1E2 · · ·Er rref (A),

where E1, . . . , Er denote certain elementary matrices. Each matrix is the
inverse of a swap, multiply or combination operation applied to A, in order to
reduce it to rref form. Because A = aug(v1, . . . ,vk), then

viq
= E1E2 · · ·Ereiq

, q = 1, . . . , p,

where ei1 , . . . , eip
denote distinct columns of the identity matrix, which occupy

the columns of the leading ones in rref(A). Then

0 = c1vi1 + · · · + cpvip

= E1E2 · · ·Er(c1ei1 + · · · + cpeip
)

implies by invertibility of elementary matrices that

c1ei1 + · · · + cpeip
= 0.

However, distinct columns of the identity matrix are independent, therefore
c1 = · · · = cp = 0. The independence of the pivot columns of A is established.

Rank and Nullity

The rank of a matrix A equals the number of leading ones in rref(A).
The nullity of a matrix A is the number of columns of A less the rank



5.5 Basis, Dimension and Rank 311

of A. Symbols rank(A) and nullity(A) denote these two integer values
and

rank(A) + nullity(A) = column dimension of A.

In terms of the system Ax = 0, the rank of A is the number of leading
variables and the nullity of A is the number of free variables, in the
reduced echelon system rref(A)x = 0.

Theorem 19 (Basis for Ax = 0)
Assume k = nullity(A) > 0. Then the solution set of Ax = 0 can be
expressed as

x = t1x1 + · · · + tkxk(1)

where x1, . . . , xk are linearly independent solutions of Ax = 0 and t1, . . . ,
tk are arbitrary scalars. The meaning:

nullity(A) = dim {x : Ax = 0} .

Proof: The system rref (A)x = 0 has exactly the same solution set as Ax = 0.
This system has a standard general solution x expressed in terms of invented
symbols t1, . . . , tk. Define xj = ∂tj

x, j = 1, . . . , k. Then (1) holds. It remains
to prove independence, which means we are to solve for c1, . . . , ck in the system

c1x1 + · · · + ckxk = 0.

The left side is a solution x of Ax = 0 in which the invented symbols have been
assigned values c1, . . . , ck. The right side implies each component of x is zero.
Because the standard general solution assigns invented symbols to free variables,
the relation above implies that each free variable is zero. But free variables have
already been assigned values c1, . . . , ck. Therefore, c1 = · · · = ck = 0. The
proof is complete.

Theorem 20 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of inde-
pendent columns of A. Equivalently, rank(A) = rank(AT ).

Proof: Let C be the set of all linear combinations of columns of A. The non-
pivot columns of A are linear combinations of pivot columns of A. Therefore,
any linear combination of columns of A is a linear combination of the p =
rank(A) linearly independent pivot columns. By definition, the pivot columns
form a basis for the vector space C.

Let R be the set of all linear combinations of columns of AT (the rows of A).
Let q be the number of elements in a basis for R. It will be shown that p = q,
which proves the theorem.

Let rref (A) = E1 · · ·EkA where E1, . . . , Ek are elementary swap, multiply and
combination matrices. Then E = (E1 · · ·Ek)T is invertible and rref (A)T =
AT E, rref (A)T E−1 = AT . The matrix rref(A)T has its first p columns inde-
pendent and its remaining columns are zero. Each nonzero column of rref (A)T

is expressed on the right as a linear combination of the columns of AT . There-
fore, R contains p independent vectors. This gives p ≤ q.
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Because rref (A)T E−1 = AT , every column of AT is a linear combination of
the p nonzero columns of rref (A)T . This implies a basis for R contains at most
p elements, i.e., q ≤ p, which proves p = q, and completes the proof of the
theorem.

The results of the preceding theorems are combined to obtain the pivot
method for finding a largest independent subset.

Theorem 21 (Pivot Method)
Let A be the augmented matrix of v1, . . . , vk. Let the leading ones in
rref(A) occur in columns i1, . . . , ip. Then a largest independent subset of
the k vectors v1, . . . , vk is the set

vi1 ,vi2 , . . . ,vip .

Nullspace, Column Space and Row Space

The kernel or nullspace of an m × n matrix A is the vector space of
all solutions x to the homogeneous system Ax = 0. In symbols,

kernel(A) = nullspace(A) = {x : Ax = 0}.

The column space of m × n matrix A is the vector space consisting of
all vectors y = Ax, where x is arbitrary in Rn. Algebra texts might also
call the column space the image of A. Because Ax can be written as a
linear combination of the columns v1, . . . , vn of A, the column space is
the set of all linear combinations

y = x1v1 + · · · + xnvn.

In symbols,

Image(A) = colspace(A) = {y : y = Ax for some x}.

The row space of m × n matrix A is the vector space consisting of
vectors w = ATy, where y is arbitrary in Rm. Technically, the row
space of A is the column space of AT . This vector space is viewed as the
set of all linear combinations of rows of A. In symbols,

rowspace(A) = colspace(AT ) = {w : w = AT y for some y}.

The row space of A and the null space of A live in Rn, but the column
space of A lives in Rm. The correct bases are obtained as follows. If an
alternative basis for rowspace(A) is suitable (rows of A not reported),
then bases for rowspace(A), colspace(A), nullspace(A) can all be
found by calculating just rref(A).
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Null Space. Compute rref(A). Write out the general solution x to
Ax = 0, where the free variables are assigned parameter names t1,
. . . , tk. Report the basis for nullspace(A) as the list of partials
∂t1x, . . . , ∂tkx.

Column Space. Compute rref(A). Identify the lead variable columns
i1, . . . , ik. Report the basis for colspace(A) as the list of columns
i1, . . . , ik of A.

Row Space. Compute rref(AT ). Identify the lead variable columns i1,
. . . , ik. Report the basis for rowspace(A) as the list of rows i1,
. . . , ik of A.

Alternatively, compute rref(A), then rowspace(A) has a basis
consisting of the list of nonzero rows of rref(A). The two bases
obtained by these methods are different, but equivalent.

Due to the identity nullity(A) + rank(A) = n, where n is the column
dimension of A, the following results hold. Notation: dim(V ) is the
dimension of vector space V , which equals the number of elements in a
basis for V . Recall that nullspace(A) = kernel(A) and colspace(A) =
Image(A) are subspaces with dual naming conventions in the literature.

Theorem 22 (Dimension Identities)
(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

(c) dim(rowspace(A)) = rank(A)

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

(e) dim(kernel(A)) + dim(kernel(AT )) = column dimension of A

Equivalent Bases

Assume v1, . . . , vk are independent vectors in an abstract vector space
V and S is the subspace of V consisting of all linear combinations of v1,
. . . , vk.

Let u1, . . . , uℓ be independent vectors in V . We study the question of
whether or not u1, . . . , uℓ is a basis for S. First of all, all the vectors
u1, . . . , uℓ have to be in S, otherwise this set cannot possibly span S.
Secondly, to be a basis, the vectors u1, . . . , uℓ must be independent.
Two bases for S must have the same number of elements, by Theorem
16. Therefore, k = ℓ is necessary for a possible second basis of S.
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Theorem 23 (Equivalent Bases of a Subspace S)
Let v1, . . . , vk be independent vectors in an abstract vector space V . Let
S be the subspace of V consisting of all linear combinations of v1, . . . , vk.

A set of vectors u1, . . . , uℓ in V is an equivalent basis for S if and only

(1) Each of u1, . . . , uℓ is a linear combination of v1, . . . , vk.

(2) The set u1, . . . , uℓ is independent.

(3) The sets are the same size, k = ℓ.

Practical tests for column vectors in Rn can be constructed for computer
algebra systems and numerical laboratories. Define

B = aug(v1, . . . ,vk)
C = aug(u1, . . . ,uℓ)
W = aug(B,C)

Then test the relation

k = ℓ = rank(B) = rank(C) = rank(W ).

The relation implies that the two sets of vectors are independent and
span the same space. The following maple code implements these ideas
to verify that the two bases determined from the colspace command in
maple and the pivot columns of A are equivalent. In maple, the report
of the column space basis is identical to the nonzero rows of rref(AT ).

with(linalg):

A:=matrix([[1,0,3],[3,0,1],[4,0,0]]);

colspace(A); # Solve Ax=0, basis v1,v2 below

v1:=vector([2,0,-1]);v2:=vector([0,2,3]);

rref(A); # Find the pivot cols=1,3

u1:=col(A,1); u2:=col(A,3); # pivot col basis

B:=augment(v1,v2); C:=augment(u1,u2);

W:=augment(B,C);

rank(B),rank(C),rank(W); # all equal 2
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