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Math 3150 Problems
‘Weeks 4-10
June 2009

Due date: See the internet due date. Problems are collected twice a week. Records are locked when the stack is returned. Records
are only corrected, never appended.

Submitted work. Please submit one stapled package per problem. Label each problem with its corresponding problem number, e.g.,

Prob3.1-4 ‘ or ’ Xcl.2-4 ‘ Kindly label extra credit problems with label | Extra Credit | You may attach this printed sheet to simplify

your work.

Labeling. The label means the problem is for chapter [x], section , problem [z] When y = 0, then the problem does
not have a textbook analog, it is a background problem. Otherwise, the problem number should match a corresponding problem in
the textbook. The same labeling applies to extra credit problems, e.g., ’Xc1.0-4 ‘, ’Xc1.1-2 ‘

Week 4: 3.1 — Examples in Physics and Engineering

Prob3.1-3. (Classification)

Classify u,, — u; = 2u as linear, nonlinear, homogeneous, non-homogeneous, and report the order of the equation.

Prob3.1-7. (Laplace Equation)

Verify that u(x,y) = e¥ cosx + x + y is a solution of Laplace’s partial differential equation.
Week 5: 3.2-3.3 — One Dimensional Wave Equation

Prob3.2-1. (Wave Equation)

Derive the equation usy = 10%uy, for the vibrations of a stretched homogeneous string with linear density p = 0.001
kg/m and tension 7 = 100 N, with no forces other than the tension. State all assumptions used to obtain the model.
Make the presentation brief, by referencing a textbook for derivation details and results.

Prob3.3-9a. (Separation of Variables)
Solve utt = Ugy, u(0,t) = u(1,t) =0, u(x,0) = z(1 — ), us(x,0) =sinwz, t > 0,0 <z < 1. The model is for a guitar
string of unit length.

Prob3.3-9b. (Snapshot Plots)

Plot partial sums of the answer to the previous problem,

= 8 1
u(z,t) = Z P sin(2mnx + wa) cos(2mmt 4+ wt) + = sin(mx) cos(mt),
m=0

at t = 0,1,2,3. Choose the number of series terms for the four graphics by making the first graphic match z(1 — x) on
0<x<1.

Prob3.3-9c. (Surface Plot)

Plot a specific partial sum of the answer

— 8 1
u(z,t) = Z TP sin(2mmzx + 7a) cos(2mmwt 4+ wt) + - sin(mx) cos(mt)

on the domain 0 <z <1, 0 <t < 4. Use all features possible of the 3D graphics program in order to produce the best
plot with fine accuracy, view and colors.



Prob3.3-13. (Damped Vibrations of a String)
Solve the problem

uge (2, 1) +ur(x,t) = uge(x,t),
u(0,t) = 0,
u(m, t) = 0,
u(z,0) sinz,
ug(z,0) = 0.
Week 6: 3.4 — d’Alembert’s Method
Prob3.4-15. (d’Alembert’s Solution)
Consider the problem
Uy = Uzm70§zgl7t203
u(0,t) = 0,
u(l,t) = 0,
u(z,0) = f(@),
ug(z,0) = 0.

Assume f(z) =4z on 0 <z <0.25, f(r) =2—420n 0.25 <2 < 0.5, f(z) =0on 0.5 <z < 1.
(a) Find a solution formula for u(z,t) using d’Alembert’s method.
(b) Plot snapshots of the string shape at times ¢ = 0,0.25,0.5.

Xc3.4-18. (Energy Conservation and d’Alembert’s Solution)
Define

E(t) = %/0 (uf (z,t) + Pul(z, b)) dz.

Prove the energy conservation law, which says that the energy during free vibrations of a string is constant for all time.
Hint: Show dE/dt = 0.

Week 7: 3.5-3.6 — One Dimensional Heat Equation

Prob3.5-13. (Nonhomogeneous Heat Equation)

Consider the one-dimensional heat conduction problem

U = Upg, 0SS, >0,
u(0,t) = 100,
u(m,t) = 50,
u(z,0) = f(x).

Assume f(zx) =33z on 0 < z < 7/2, f(z) = 337 — 33z on 7/2 < z < 7. Find a solution formula for the temperature
u(x,t). See the web site notebook computer link for sample maple code used to solve this problem.

Prob3.6-3. (Heat Conduction in an Insulated Bar)

Consider the one-dimensional heat conduction problem

= uilaogx§17t>07

U
uz(0,1) = 0,
ug(1,8) = 0,
u(xz,0) = cosTx

Find a solution formula for the temperature u(z,t) at location x along the bar at time ¢. Hint: Don’t integrate!

Remark. The book’s problem 3.6-3 has a piecewise example, using u(z,0) = f(x). See the maple advice for problem 3.5-13, to hand
that case.



Week 9: 3.7 — Two Dimensional Equations

Prob3.7-5a. (Vibrations of a Membrane)
Consider the rectangular drumhead problem, in which we assume 0 <z <1,0<y <1,t > 0:

utt(mayvt) = #(um(ac7y,t)+uyy(x7y,t))7
u(O,y,t) = 0,
u(layvt) = 0,
u(z,0,t) = 0,
u(z,1,t) = 0,
u(z,y,0) = 0,
us(z,y,0) = 1.

Solve for the drumhead defection u(z,y,t).

Prob3.7-5b. (Membrane Snapshots)
Consider the solution of the rectangular drumhead problem given by the series
sin(mmz) sin(nmy) sin (t m?2 + n2) .
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Tllustrate the various shapes of the drumhead during vibration, by plotting suitable surface snapshots at times t = 1, 2, 3.
The snapshot at ¢ = 0 should be the initial flat membrane shape u = 0. Choose suitable partial sums to reveal adequate
detail in the plots.

Prob3.7-12. (Heat Conduction in a Plate)
Consider the rectangular plate heat conduction problem in which we assume 0 <z <1, 0<y <1, t>0:

ut(xvyvt) = uxm(x7yat) +uyy(x7yat)v
U(O,yﬂf) = 0,

u(l?yvt) = 0,

u(z,0,t) = 0,

u(z,1,t) = 0,

u(z,y,0) = z(l—-z)y(l—y).

Solve for the plate temperature u(z,y,t).

Xc3.7-12. (Heat Conduction in a Plate)

Find a series estimate for the solution u(x,y,t) of the rectangular plate heat conduction problem which shows that
|u(z,y,t)] < Me™° for some number M > 0 and some constant o > 0. Then conclude that

lim u(x7 y? t) = 07
t—o0o
which implies the plate temperature u stabilizes to the edge temperature u = 0 as t approaches infinity.

Problem notes.

The Cauchy-Schwartz inequality is used to find a upper estimate of |u|? as a product of two positive series. One series is
numeric, and Bessel's inequality can be used to determine an upper bound M; for it. The other series in the product is
a series of functions, each function an exponential function bounded above by e™?*, where 3 > 0 is a fixed constant. A

n 1

. . . . . oo .
clever analysis of the exponential factors, using the geometric series formula Zn:O r"™ = 1=, shows that the second series

is bounded by some constant M; > 0 times e~ P, where p = (/2. Taking square roots across \u|2 < My Mse™ "t implies
that constants M = /M1 Ms > 0 and a = p/2 > 0 satisfy |u| < Me™*".



Week 10: 3.8-3.9 — Laplace’s and Poisson’s Equations

Prob3.8-2. (Steady-State Temperature in a Plate)

Consider the rectangular plate steady-state heat conduction problem in which we assume the plate is given by 0 < x < 1,
O<y<l:

umm(xvy) + Uyy(x»y) = 0,
u(z,0) = 0,
u(x,1) = 100,
U(O, y) = 0,
u(l,y) = 100.

(a) Draw a figure for the Dirichlet problem, showing the edge temperatures on the plate. Break the problem into two
subproblems, decomposing u = u; + ug. Draw figures for each subproblem.

(b) Solve for the temperatures u;(x,y) and us(z,y).

(c) Report the solution to the original problem, u = uy + us.

Notes. In the general problem of Nakhle’s section 3.8, fi(z) = ¢g1(y) = 0 and f3(z) = ¢g2(y) = 100. In the
summary shaded display before the 3.8 exercises, A, = C,, =0 and B,, D,, are computed from equations

(5), (6). Example 2 in Nakhle’s section 3.8 solves for B,,, therefore you have an easy answer check for
half the problem.

Prob3.9-3. (Poisson Problem)

Consider the rectangular plate steady-state Poisson heat conduction problem in which we assume the
plateis given by 0 <z <1, 0<y < 1:

Ugy (:Ea y) + uyy (Z, y) = Sin ’/Tl’,
u(z,0) = 0,
u(z,1) = ux,
U(O, y) = 0,
u(l,y) = 0.

(a) Draw a figure for the Poisson problem with zero boundary conditions [see (b)]. Draw a second figure
for the corresponding Dirichlet problem with identical boundary conditions [see (c)].

(b) Solve for the temperature u;(z,y) satisfying the Poisson problem

Uz (T, Y) + Uyy(2,y) = sinmz,
u(z,0) = 0,
u(z,1) = 0,
u(0,y) = 0,
u(l,y) = 0.

Uae (T, Y) + Uyy(2,y) = O,
u(z,0) = 0,
u(z,1) =
U(O,y) = 0,
u(l,y) = 0.

(d) Report the solution to the original Poisson problem, which is u = u; + us.

Notes. Problem (c) is solved in section 3.8 of Nakhle’s textbook, with summary in the shaded display
just before the exercises 3.8. In this display, A, = C,, = D,, = 0 and B,, must be computed from (5) using
f2(xz) = . Problem (b) is solved from Nakhle’s section 3.9 equations (2) and (4). A similar problem is
solved in Example 1. The challenge is the double integration in (4) with f(z,y) = sinmz. Luckily, this is
an iterated double integral, evaluated by two successive one-variable integrations:

—4
AT?LTI,

1 1
En = / sin 7wz sin mmrxdx / sin nmydy.
0 0



