Applied Differential Equations 2250

Exam date: Thursday, 3 December, 2009

Instructions: This in-class exam is 50 minutes. Up to 60 extra minutes will be given. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

- 1. (Chapter 5) Complete all.
 - (1a) [70%] Write the solution of $x''(t) + 9x(t) = 120\sin(t)$, x(0) = x'(0) = 0, as the sum of two harmonic oscillations of different natural frequencies. To save time, don't convert to phase-amplitude form.

Answer:

$$x(t) = 15\sin(t) - 5\sin(3t)$$

(1b) [30%] Determine the practical resonance frequency ω for the electrical equation $13I'' + 2I' + 39I = 100\omega\cos(\omega t)$.

Answer:

$$\omega = \sqrt{1/(LC)} = \sqrt{3}$$
.

2. (Chapter 5) Complete all.

(2a) [75%] A homogeneous linear differential equation with constant coefficients has characteristic equation of order 7 with roots 0, 0, -1, -1, -1, 2i, -2i, listed according to multiplicity. The corresponding non-homogeneous equation for unknown y(x) has right side $f(x) = 3e^x + 4e^{-x} + 5x^3 + 6\sin 2x$. Determine the undetermined coefficients **shortest** trial solution for y_p . To save time, **do not** evaluate the undetermined coefficients and **do not** find $y_p(x)$! Undocumented detail or guessing earns no credit.

Answer:

The atoms of f(x) are e^x , e^{-x} , x^3 , $\sin 2x$. Complete the list, adding the related atoms, to obtain 5 groups, each group having exactly one base atom: (1) e^x , (2) e^{-x} , (3) $1, x, x^2, x^3$, (4) $\cos 2x$, (5) $\sin 2x$. The trial solution is a linear combination of 8 atoms, modified by rules to the new list (1) e^x , (2) x^3e^{-x} , (3) x^2, x^3, x^4, x^5 , (4) $x\cos 2x$, (5) $x\sin 2x$.

(2b) [25%] Let $f(x) = 4x^3e^x$. Find a constant-coefficient linear homogeneous differential equation of smallest order which has f(x) as a solution.

Answer:

The atom x^3e^x is constructed from roots 1,1,1,1, listed according to multiplicity. Then the characteristic polynomial must include factor $(r-1)^4$. The smallest order characteristic polynomial must be a constant multiple of $(r-1)^4=r^4-4r^3+6r^2-4r+1$. This characteristic equation belongs to the differential equation $y^{(4)}-4y'''+6y''-4y'+y=0$.

3. (Chapter 10) Complete all parts. It is assumed that you have memorized the basic 4-item Laplace integral table and know the 6 basic rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you don't know a table entry, then leave the expression unevaluated for partial credit.

(3a) [50%] Display the details of Laplace's method to solve the system for y(t). Don't waste time solving for x(t)!

$$x' = x + 2y,$$

 $y' = 3x,$
 $x(0) = 0, y(0) = 5.$

Suggestion: Solve it with scalar methods.

Alternate method: Laplace resolvent equation $(sI - A)\mathcal{L}(\mathbf{u}) = \mathbf{u}(0)$ and Cramer's Rule. Notation: \mathbf{u} is the vector solution of $\mathbf{u}' = A\mathbf{u}$ with components x(t), y(t).

Answer:

The Laplace resolvent equation can be written out to find the relations for $\mathcal{L}(x(t))$, $\mathcal{L}(y(t))$. Cramer's rule applies to find $\mathcal{L}(y(t)) = \frac{5(s-1)}{(s-3)(s+2)}$. Then partial fractions and backward table methods determine $y(t) = 3e^{-2t} + 2e^{3t}$. The same method applies to determine $\mathcal{L}(x(t)) = \frac{10}{(s-3)(s+2)}$ and then $x(t) = 2e^{3t} - 2e^{-2t}$.

(3b) [25%] Find f(t) by partial fraction methods, given

$$\mathcal{L}(f(t)) = \frac{3s+15}{s(s-3)}.$$

Answer:

$$\mathcal{L}(f(t)) = \frac{-5}{s} + \frac{8}{s-3} = \mathcal{L}(-5 + 8e^{3t})$$

(3c) [25%] Solve for f(t), given

$$\frac{d^2}{ds^2}\mathcal{L}(f(t)) = \frac{2}{s^3} + \frac{2}{(s-3)(s^2 - 6s + 9)}.$$

Answer:

Use the s-differentiation theorem and the first shifting theorem to get $(-t)^2 f(t) = t^2 + t^2 e^{3t}$ or $f(t) = 1 + e^{3t}$.

- 4. (Chapter 10) Complete all parts.
 - (4a) [50%] Fill in the blank spaces in the Laplace table:

f(t)	t^3			$e^{-t}\sin \pi t$	$2te^{-t/3}$
$\mathcal{L}(f(t))$	$\frac{6}{s^4}$	$\frac{1}{(2s+5)^2}$	$\frac{s+1}{s^2+2s+5}$		

Answer:

Left to right: $\frac{1}{4}te^{-5t/2}$, $e^{-t}\cos 2t$, $\frac{\pi}{(s+1)^2+\pi^2}$, $\frac{2}{(s+1/3)^2}$.

(4b) [50%] Solve by Laplace's method for the solution x(t):

$$x''(t) + 4x(t) = 8e^{-2t}, \quad x(0) = x'(0) = 0.$$

Answer:

$$x(t) = \sin(2t) - \cos(2t) + e^{-2t}.$$

5. (Chapter 6) Complete all parts.

(5a) [20%] Find the eigenvalues of the matrix $A = \begin{pmatrix} -1 & 6 & 1 & 12 \\ -2 & 7 & -3 & 15 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & -5 & 2 \end{pmatrix}$. To save time, **do not** find eigenvectors!

Answer:

 $1, 5, 2 \pm 5i$

(5b) [40%] Given
$$A = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, which has eigenvalues 1, -1, -1, find all eigenvectors.

Answer:

Two frame sequences are required, one for $\lambda=1$ and one for $\lambda=-1$. Sequence 1 starts with $\begin{pmatrix} -2 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, the last frame having just one row of zeros. There is one invented symbol t_1

in the last frame algorithm answer. Taking ∂_{t_1} gives one eigenvector, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Sequence 2 starts

with $\begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, with $\mathbf{rref} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. There is one invented symbol t_1 in the last

frame algorithm answer. Taking ∂_{t_1} gives one eigenvector, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. This matrix has no Fourier model, it is not diagonalizable.

(5c) [20%] Suppose a 2×2 matrix A has eigenpairs $\left(e^2, \begin{pmatrix} 1 \\ 3 \end{pmatrix}\right), \left(e^3, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$. Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer:

Define
$$P = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} e^2 & 0 \\ 0 & e^3 \end{pmatrix}$. Then $AP = PD$.

(5d) [20%] Assume the vector general solution $\vec{\mathbf{u}}(t)$ of the 2 × 2 linear differential system $\vec{\mathbf{u}}' = C\vec{\mathbf{u}}$ is given by

$$\vec{\mathbf{u}}(t) = c_1 e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Find the eigenpairs of the matrix C.

Answer:

The missing exponential in the second term is e^{0t} . The eigenvalues come from the coefficients in the exponentials, 2 and 0. The eigenpairs are $\left(2, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$, $\left(0, \begin{pmatrix} -2 \\ 1 \end{pmatrix}\right)$.

Use this page to start your solution. Attach extra pages as needed, then staple.