Applied Differential Equations 2250

Exam date: Thursday, 5 November, 2009

Instructions: This in-class exam is 50 minutes. Up to 30 extra minutes will be given. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Frame sequences and the 3 possibilities)

Determine A, B such that the system has a unique solution, infinitely many solutions, or no solution:

2. (vector spaces) Do all parts.

- (a) [20%] State one theorem which has conclusion S is a subspace.
- (b) [40%] Let V be the vector space of all column vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and let S be the subset of V given by

the restriction equations $\ln(1+x_1^2)=0$, $(4x_2-x_3)^2=0$. Prove or disprove that S is a subspace of V.

(c) [40%] Find a basis of vectors for the subspace of \mathbb{R}^4 given by the system of restriction equations

(a) Kernel Theorem. If The restriction equations defining S can be written as a matrix equation $AX = \overline{O}$, Then S is a subspace.

Subspace criterion, A subset S of a rector space V is a subspace it (1) oirs, (2) x, y in S => x+y in S, (3) C = scalar and x in S => c x in S.

- (b) Bocanse $\chi^2 = 0 \iff \chi = 0$, $\lim_{x \to 0} \ln(1+\chi_1^2) = 0 \iff \chi_1 = 0$ and $(4 \times 2 - \times 3)^2 = 0 \iff 4 \times 2 - \times 3 = 0$. Define $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\lim_{x \to 0} Ax = 0$ is equivalent to $\lim_{x \to 0} \operatorname{Restriction}$ equations. Set S is a subspace by $\lim_{x \to 0} \operatorname{Restriction}$.
- (c) The rref is $\begin{pmatrix} 1 & 0 & -4 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ which implies $\begin{cases} x_1 = 4t_1 2t_2 \\ x_2 = -t_1 \\ x_3 = t_1 \\ x_4 = t_2 \end{cases}$ The basis is $\begin{cases} 2\overline{x}, & 2\overline{x} \\ 2t_1, & 2\overline{t_2} \end{cases} = \begin{cases} \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \end{cases}$

- 3. (independence) Do all parts.
 - (a) [25%] Let $\mathbf{u}_1=\begin{pmatrix} 3\\-1 \end{pmatrix}$, $\mathbf{u}_2=\begin{pmatrix} 5\\0 \end{pmatrix}$, $\mathbf{u}_3=\begin{pmatrix} 2\\1 \end{pmatrix}$, State a test that can decide independence or dependence of this list of three vectors [10%]. Apply the test and report the result [15%].
 - (b) [25%] Let $f_1(x) = x^2$, $f_2(x) = x^{1/2}$. State a test which can decide independence or dependence of the two functions on $0 < x < \infty$ [10%]. Apply the test and report the result [15%].
 - (c) [50%] Extract from the list below a largest set of independent vectors.

(c) [50%] Extract from the list below a largest set of
$$a = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 7 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ -3 \\ 0 \\ 5 \end{bmatrix}$, $d = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 2 \end{bmatrix}$, $e = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 5 \end{bmatrix}$.

- (a) Test. A = augmented matrix of u1, u2, u3. Ten {21, u, u, us is independent (rank (4) = 3 Apply, $A = \begin{pmatrix} 3 & 5 & 2 \\ -1 & 0 & 1 \end{pmatrix}$ has at most rank $2 \Rightarrow 3$ dependent.
- Wronskian Test: $|f_1(x)| + o$ for some $x \Rightarrow (f_1, f_2)$ indep. Sample test: | f.(xi) f2(xi) | to for some x1, x2=>

Apply: |f, t2 = | x2 x /2 | = - = x3/2 + 0 for x=) = |f, f2 indep.

(c)
$$\text{rref} = \begin{pmatrix} 1 & 0 & 8/3 & 0 & 3 \\ 0 & 1 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{by pivot Theorem } \vec{a}, \vec{b}, \vec{d}$$
form a largest set of indep.

Vectors.

- 4. (determinants) Do all parts.
 - (a) [40%] Assume given 3×3 matrices A, B. Suppose $E_5E_4BA = E_3E_2E_1$ and E_1 , E_2 , E_3 , E_4 , E_5 are elementary matrices representing respectively a swap, a multiply by -5, a combination, a multiply by 3, and a swap. Assume $\det(A) = 4$. Find $\det(2AB)$.
 - (b) [20%] Define $A = \begin{pmatrix} -1 & 6x 1 & 9x 5 \\ 2 & 0 & 2 \\ 15x & 0 & -1 \end{pmatrix}$. Determine all values of x for which $(I + B)^{-1}$ fails to

exist, where B is the transpose of A and I is the identity matrix.

(c) [40%] Let matrix A be defined as below. Apply the adjugate formula for the inverse to find a determinant formula for the entry of A^{-1} located in row 2, column 3. Other methods are not acceptable. To save time, do not evaluate determinants.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

(a) The determinant product Thorem and known values of determinants of elementary metrices imply

$$(-1)(3)|B|(4) = (1)(-5)(-1)$$

 $|B| = -\frac{5}{12}$

$$det(2AB) = det(2I) det(A) det(B)$$

$$= 2^{3} (4)(-5/12) = \boxed{\frac{-40}{3}}$$

(b)
$$|I+A| = \begin{vmatrix} 0 & 6x-1 & 9x-5 \\ 2 & 1 & 2 \\ 15x & 0 & 0 \end{vmatrix} = 15x(3x+3)$$
 $x = -1$

(c) entry =
$$\frac{\text{cofactor}(A, 3, 2)}{|A|} = \frac{(-1)}{|A|} \begin{vmatrix} 100 \\ 120 \end{vmatrix} = \frac{-2}{|A|}$$

 $|A| = 1 \cdot \begin{vmatrix} 120 \\ 112 \end{vmatrix} = \begin{vmatrix} 102 \\ -2 \end{vmatrix} - 2 \begin{vmatrix} 12 \\ -12 \end{vmatrix} = 2 \cdot 8 = -6$
Cofactor xp on p on

- 5. (Linear differential equations) Do all three parts.
 - (a) [30%] Find a solution basis for 6y'' + 17y' + 5y = 0 and report the general solution.
 - (b) [40%] The characteristic equation is $r^2(r^2 + 5r + 6)(r^2 + 2r + 5)^2 = 0$. Find the general solution yof the homogeneous constant-coefficient differential equation.
 - (c) [30%] A second order differential equation y'' + py' + qy = 0 with constant coefficients p, q has general solution $y = c_1 e^{-x/2} + c_2 (e^x + 2e^{-x/2})$. Find p and q.
 - (a) Roots = $-\frac{5}{2}$, $\frac{1}{3}$; atoms = $\frac{-5\times12}{6}$ = Solution basis General Solution = I mean combination of the atoms
 - (b) $\gamma = 0, 0, -3, -2, -1 \pm 2i, -1 \pm 2i$ atoms = 1, x, \bar{e}^{3x} , \bar{e}^{2x} , \bar{e}^{x} col 2x, $x\bar{e}^{x}$ col 2x, $x\bar{e}^{x}$ col 2x, $x\bar{e}^{x}$ col 2x y = linear combination of Place & atoms
 - The DE must have atoms ex, ex; honce r2+pr+2=0 has nouts 1, -1/2. $(r-1)(r+1) = r^2 + pr+1$

Applied Differential Equations 2250

Exam date: Thursday, 5 November, 2009

Instructions: This in-class exam is 50 minutes. Up to 30 extra minutes will be given. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Frame sequences and the 3 possibilities) Determine A, B such that the system has a unique solution, infinitely many solutions, or no solution:

$$\begin{pmatrix}
1 & 2 & 2 & | & -2 & | & 3 \\
5 & A & 4 & | & -8 & | & 2-8
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 2 & | & -28 & | & 2-8
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 2 & | & -28 & | & 2-58
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & -6 & | & 9B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

$$\begin{pmatrix}
0 & A-10 & 0 & | & 12-21B & | & 2-5B
\end{pmatrix}$$

unique solution: A = 10, B = 4/7 ∞ - Mary Solutions: A = 10, B = 4/7

- 2. (vector spaces) Do all parts.
 - (a) [20%] Define what it means for S to be a subspace of V.
 - (b) [40%] Let V be the vector space of all column vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and let S be the subset of V given

by the restriction equations $e^{x_1} = 1$, $x_2 = 2x_3$. Prove or disprove that S is a subspace of V.

(c) [40%] Find a basis of 4-vectors for the subspace of \mathbb{R}^4 given by the system of restriction equations

(a) S is a subspace of vector space V if it is a nonvoid subset of V ant is a vector space under to operations to of V.

(b)
$$e^{x_1} = 1$$
 and $x_2 = 2x_3$ \Rightarrow $\begin{cases} x_1 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$ $\begin{cases} x_1 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$ $\begin{cases} x_1 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$

Basis =
$$\left\{\frac{\partial \vec{x}}{\partial t_1}, \frac{\partial \vec{x}}{\partial t_2}\right\} = \left\{\begin{pmatrix} -\frac{1}{1} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{6} \\ 0 \end{pmatrix}\right\}$$

- 3. (independence) Do all parts.
- (a) [25%] Let $\mathbf{u}_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, State a test that can decide independence or dependence of this list of three vectors [10%]. Apply the test and report the result [15%].
 - (b) [25%] Let $f_1(x) = x$, $f_2(x) = x^{3/2}$. State a test which can decide independence or dependence of the two functions on $0 < x < \infty$ [10%]. Apply the test and report the result [15%].
 - (c) [50%] Extract from the list below a largest set of independent vectors.

(c)
$$|50\%|$$
 Extract from the factor $|50\%|$ (d) $|50\%|$ Extract from the factor $|50\%|$ and $|50\%|$ Extract from the factor $|50\%|$ and $|50\%|$ by $|50\%|$

- (a) Test: Let A = augmented matrix of u, uz, uz. Then du, juz, uz } is independent (vent (A) = 3
 - Apply: $A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$ has rank $\leq 2 \implies$ dependent
 - (b) wrowskiam test: |fi(x) fz(x) | + o for some x=) (fists) indep. Apply: $| x | x | x | = \frac{1}{2} x^{3/2} = 0$ at $x = 1 \Rightarrow \{x, x^{3/2}\}$ indep on $0 < x < \infty$.

4. (determinants) Do all parts.

(a) [40%] Assume given 3×3 matrices A, B. Suppose $E_5E_4BA = E_3E_2E_1B$ and E_1 , E_2 , E_3 , E_4 , E_5 are elementary matrices representing respectively a swap, a multiply by -2, a combination, a multiply by 3, and a swap. Assume $\det(A) = 4$. Find $\det(2AB)$.

(b) [20%] Define
$$A = \begin{pmatrix} -1 & 2x - 1 & 3x - 5 \\ 2 & 0 & 2 \\ 5x & 0 & -1 \end{pmatrix}$$
. Determine all values of x for which $(I + B)^{-1}$ fails to

exist, where B is the transpose of A and I is the identity matrix.

(c) [40%] Let matrix A be defined as below. Apply the adjugate formula for the inverse to find the value of the entry of A^{-1} located in row 2, column 3. Other methods are not acceptable.

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 0 & 2 \\ 1 & 1 & 2 \end{array}\right)$$

(a) Ne determinant product Neoren plus known determinant values for clamentary matrices riply

$$(-1)(3) |B||A| = (1)(-2)(-()|B||$$

 $(-3) |B|(4) = 2|B|$

First and.

$$det(2AB) = det(2I) det(A) det(B) = 0$$

-> At Exportine, The problem was changed, replacing BA by A.
Then The answer is

$$(-1)(3)(4) = (1)(-2)(-1)[B]$$

$$-6 = [B]$$

$$dt(2AB) = dt(2I) dt(A) dt(B) = 2(4)(-6)$$

Jeand are

(b)
$$|I+B| = \begin{vmatrix} 0 & 2x-1 & 3x-5 \\ 2 & 1 & 2 \\ 5x & 0 & 0 \end{vmatrix} = 5x(x+3)$$
 $[X=0, X=-3]$

(c) larry = cofactor
$$(A, 3, 2) = (-1) \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = \begin{bmatrix} -1 \\ \overline{3} \end{bmatrix}$$

- 5. (Linear differential equations) Do all three parts.
 - (a) [30%] Find a solution basis for 2y'' + 4y' + 10y = 0 and report the general solution.
 - (b) [40%] The characteristic equation is $r^{3}(r^{2}-r-6)(r^{2}+2r+10)^{2}=0$. Find the general solution y of the homogeneous constant-coefficient differential equation.
 - (c) [30%] A second order differential equation y'' + py' + qy = 0 with constant coefficients p, q has general solution $y = c_1 e^x + c_2 (e^x + e^{-x/2})$. Find p and q.
 - (a) Roots = -1±2i, atoms = excos 2x, expres = sol, basis of = linear combination of The adoms
 - (b) roots = $0,0,0,3,-2,-1\pm 3i,-1\pm 3i$ (9 Moots) atom = $1/x/x^2$, e^{3x} , e^{-2x} , e^{x} co₁3x, xe^{-x} co₁3x, Exsingx, xexmi3x 3 = linear combination of The 9 externs
 - (c) adoms must be ex, ex/2 routs = 1, -1/2 Factors = V-1, V+1/2 (r-1)(r+12) = r +pr+1 トュナーショ reprtg P=9=-=