Orthogonality

- Orthogonal Vectors
- Unitization
- Orthogonal and Orthonormal Set
- Independence and Orthogonality
- Inner Product Spaces
- Fundamental Inequalities
- Pythagorean Relation
Orthogonality

Definition 1 (Orthogonal Vectors)
Two vectors \(\mathbf{u}, \mathbf{v} \) are said to be orthogonal provided their dot product is zero:

\[
\mathbf{u} \cdot \mathbf{v} = 0.
\]

If both vectors are nonzero (not required in the definition), then the angle \(\theta \) between the two vectors is determined by

\[
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} = 0,
\]

which implies \(\theta = 90^\circ \). In short, orthogonal vectors form a right angle.
Unitization

Any nonzero vector \mathbf{u} can be multiplied by $c = \frac{1}{\|\mathbf{u}\|}$ to make a unit vector $\mathbf{v} = c\mathbf{u}$, that is, a vector satisfying $\|\mathbf{v}\| = 1$.

This process of changing the length of a vector to 1 by scalar multiplication is called \textit{unitization}.
Definition 2 (Orthogonal Set of Vectors)
A given set of nonzero vectors \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) that satisfies the orthogonality condition
\[
\mathbf{u}_i \cdot \mathbf{u}_j = 0, \quad i \neq j,
\]
is called an orthogonal set.

Definition 3 (Orthonormal Set of Vectors)
A given set of unit vectors \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) that satisfies the orthogonality condition is called an orthonormal set.
Theorem 1 (Independence)
An orthogonal set of nonzero vectors is linearly independent.

Proof: Let c_1, \ldots, c_k be constants such that nonzero orthogonal vectors u_1, \ldots, u_k satisfy the relation

$$c_1 u_1 + \cdots + c_k u_k = 0.$$

Take the dot product of this equation with vector u_j to obtain the scalar relation

$$c_1 u_1 \cdot u_j + \cdots + c_k u_k \cdot u_j = 0.$$

Because all terms on the left are zero, except one, the relation reduces to the simpler equation

$$c_j \|u_j\|^2 = 0.$$

This equation implies $c_j = 0$. Therefore, $c_1 = \cdots = c_k = 0$ and the vectors are proved independent.
Inner Product Spaces

An inner product on a vector space V is a function that maps a pair of vectors u, v into a scalar $\langle u, v \rangle$ satisfying the following four properties.

1. $\langle u, v \rangle = \langle v, u \rangle$ [symmetry]
2. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ [additivity]
3. $\langle cu, v \rangle = c \langle u, v \rangle$ [homogeneity]
4. $\langle u, u \rangle \geq 0$, $\langle u, u \rangle = 0$ if and only if $u = 0$ [positivity]

The length of a vector is then defined to be $\|u\| = \sqrt{\langle u, u \rangle}$.

A vector space V with inner product defined is called an inner product space.
Theorem 2 (Cauchy-Schwartz Inequality)
In any inner product space V,

$$|\langle u, v \rangle| \leq \|u\| \|v\|.$$

Equality holds if and only if u and v are linearly dependent.

Theorem 3 (Triangle Inequality)
In any inner product space V,

$$\|u + v\| \leq \|u\| + \|v\|.$$
Theorem 4 (Pythagorean Identity)
In any inner product space V,

$$\|u + v\|^2 = \|u\|^2 + \|v\|^2$$

if and only if u and v are orthogonal.