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Brine Tank Cascade
Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as in Figure 1.
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Figure 1. Three brine tanks in cascade.

Assumptions and Notation
• It is supposed that fluid enters tank A at rate r, drains from A to B at rate r, drains from B to C at rate r,

then drains from tank C at rate r. Hence the volumes of the tanks remain constant. Let r = 10, to illustrate
the ideas.

• Uniform stirring of each tank is assumed, which implies uniform salt concentration throughout each tank.

• Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. We suppose added to tank A water
containing no salt. Therefore, the salt in all the tanks is eventually lost from the drains.



Cascade Model

The cascade is modeled by the chemical balance law

rate of change = input rate − output rate.

Application of the balance law results in the triangular differential system
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Cascade Model Solution

The solution is justified by the integrating factor method for first order scalar differential
equations.
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Recycled Brine Tank Cascade
Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as in Figure 2.
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Figure 2. Three brine tanks in cascade with recycling.

Assumptions and Notation
• Suppose that fluid drains from tank A to B at rate r, drains from tank B to C at rate r, then drains from

tank C to A at rate r. The tank volumes remain constant due to constant recycling of fluid. For purposes
of illustration, let r = 10.

• Uniform stirring of each tank is assumed, which implies uniform salt concentration throughout each tank.

• Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. No salt is lost from the system,
due to recycling.



Recycled Cascade Model

Using compartment analysis, the recycled cascade is modeled by the non-triangular system
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Recycled Cascade Solution

x1(t) = c1 + (c2 − 2c3)e
−t/3 cos(t/6) + (2c2 + c3)e

−t/3 sin(t/6),

x2(t) =
1

2
c1 + (−2c2 − c3)e

−t/3 cos(t/6) + (c2 − 2c3)e
−t/3 sin(t/6),

x3(t) = c1 + (c2 + 3c3)e
−t/3 cos(t/6) + (−3c2 + c3)e

−t/3 sin(t/6).

• At infinity, x1 = x3 = c1, x2 = c1/2. The meaning is that the total amount of salt
is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.

• The solution of the system was found by the eigenanalysis method. It can also be found
by the resolvent method in Laplace theory.



Home Heating

Consider a typical home with attic, basement and insulated main floor.
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Figure 3. Typical home with attic and basement. The below-grade basement and the attic
are un-insulated. Only the main living area is insulated.



Heating Assumptions and Variables

• It is usual to surround the main living area with insulation, but the attic area has walls
and ceiling without insulation.

• The walls and floor in the basement are insulated by earth.

• The basement ceiling is insulated by air space in the joists, a layer of flooring on the
main floor and a layer of drywall in the basement.

We will analyze the changing temperatures in the three levels using Newton’s cooling law
and the variables

z(t) = Temperature in the attic,
y(t) = Temperature in the main living area,
x(t) = Temperature in the basement,
t = Time in hours.



Newton Cooling Model
Assume it is winter time and the outside temperature in constantly 35◦F during the day.
Also assumed is a basement earth temperature of 45◦F. Initially, the heat is off for several
days. The initial values at noon (t = 0) are then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with thermostat set for 100◦F. When
the heater is running, it provides a 20◦F rise per hour, therefore it takes some time to reach 100◦F
(probably never!).

Newton’s cooling law

Temperature rate = k(Temperature difference)
will be applied to five boundary surfaces: (0) the basement walls and floor, (1) the basement
ceiling, (2) the main floor walls, (3) the main floor ceiling, and (4) the attic walls and
ceiling. Newton’s cooling law gives positive cooling constants k0, k1, k2, k3, k4 and the
equations

x′ = k0(45− x) + k1(y − x),
y′ = k1(x− y) + k2(35− y) + k3(z − y) + 20,
z′ = k3(y − z) + k4(35− z).



Insulation Constants and the Final Model

The insulation constants will be defined as k0 = 1/2, k1 = 1/2, k2 = 1/4, k3 =
1/4, k4 = 1/2 to reflect insulation quality. The reciprocal 1/k is approximately the
amount of time in hours required for 63% of the temperature difference to be exchanged.
For instance, 4 hours elapse for the main floor. The model:
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Homogeneous Solution

The homogeneous solution in vector form is given in terms of constants a = (7 −√
21)/8, b = (7 +

√
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Particular Solution

A particular solution is an equilibrium solution xp(t)
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zp(t)
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The homogeneous solution has limit zero at infinity, hence the temperatures of the three
spaces hover around x = 57, y = 69, z = 46 degrees Fahrenheit. Specific information
can be gathered by solving for c1, c2, c3 according to the initial data x(0) = 45, y(0) =
z(0) = 35. The answers are
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Underpowered Heater

To the main floor each hour is added 20◦F, but the heat escapes at a substantial rate, so that
after one hour y ≈ 51◦F. After five hours, y ≈ 65◦F. The heater in this example is so
inadequate that even after many hours, the main living area is still under 69◦F.



Forced air furnace

Replacing the space heater by a normal furnace adds the difficulty of switches in the input,
namely, the thermostat turns off the furnace when the main floor temperature reaches 70◦F,
and it turns it on again after a 4◦F temperature drop. We will suppose that the furnace has
four times the BTU rating of the space heater, which translates to an 80◦F temperature rise
per hour.

The study of the forced air furnace requires two differential equations, one with 20 replaced
by 80 (DE 1, furnace on) and the other with 20 replaced by 0 (DE 2, furnace off). The
plan is to use the first differential equation on time interval 0 ≤ t ≤ t1, then switch to the
second differential equation for time interval t1 ≤ t ≤ t2. The time intervals are selected
so that y(t1) = 70 (the thermostat setting) and y(t2) = 66 (thermostat setting less 4
degrees). Numerical work gives the following results.



Furnace Cycling

Time in minutes Main floor temperature Model Furnace
31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
55.0 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be seen from the model.
Each time the furnace cycles, heat enters the main floor, then escapes through the other
two levels. Consequently, the initial conditions applied to models 1 and 2 are changing,
resulting in different solutions to the models on each switch.


