Differential Equation Plots
 Mathematics 5410

Example. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y+1}{t+1} \\
y(1)=1
\end{array}\right.
$$

numerically and plot.
Solution: In Maple, the code is as follows.

```
de:=diff(y(t),t)=(y(t)+1)/(t+1) :
ic:=y(1)=1:
Y:=dsolve({de,ic},y(t),type=numeric):
with(plots):
odeplot(Y,[t,y(t)],1..10);
# True solution is y(t)=t.
# Plot should be the 45 degree line y=x.
```

The xmaple command plotsetup(x11): redirects plots to a separate window, which makes them somewhat easier to manipulate. The idea is invaluable for seeing a sequence of plots with different initial data. These plots go away by pressing key \mathbf{Q} inside the plot.

Problem 1. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y^{2}}{t} \\
y(1)=1
\end{array}\right.
$$

numerically and plot on $t=1$ to $t=5$.
Problem 2. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=y e^{-t} \\
y(0)=e
\end{array}\right.
$$

numerically and plot on $t=0$ to $t=2$.
Problem 3. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=-\frac{t}{y} \\
y(1)=2
\end{array}\right.
$$

numerically and plot on $t=1$ to $t=5$.

Problem 4. Plot the solution curves for the problem

$$
\left\{\begin{array}{l}
y^{\prime}=3 y(1-y / 12)-8 \\
y(0)=y_{0}
\end{array}\right.
$$

on $t=0$ to $t=1$ for the five cases $y_{0}=2,4,6,8,10$, and highlight the equilibrium levels.

Example. Plot the solutions to the first two differential equations of Problems 4 on the same plot.

Solution:

```
de:=diff(y(t),t) = 3*y(t)*(1-y(t)/12)-8:
ic:=y(0)=2:
Y1:=dsolve({de,ic},y(t),type=numeric):
p1:=odeplot(Y1,[t,y(t)],0..1):
de:=diff(y(t),t) = 3*y(t)*(1-y(t)/12)-8:
ic:=y(0)=4:
Y2:=dsolve({de,ic},y(t),type=numeric):
p2:=odeplot(Y2,[t,y(t)],0..1):
display([p1,p2]);
```

Problem 5 (Teddy Bears, page 58). Plot the solution curves for the problem

$$
\left\{\begin{array}{l}
x^{\prime}=\sin y-2 \sin x^{2} \sin 2 y \\
y^{\prime}=-\cos x-2 x \cos x^{2} \cos 2 y \\
x(0)=0, \quad y(0)=\pi / 2
\end{array}\right.
$$

on $t=-10$ to $t=10$. Reproduce a portion of the figure on page 59.

Sample code: The code below produces a direction field and a portion of the desired plot.

```
de1:=diff(x(t),t)=\operatorname{sin}(y(t))-2*\operatorname{sin}(\textrm{x}(\textrm{t})*\textrm{x}(\textrm{t}))*\operatorname{sin}(2*y(t)):
de2:=diff(y(t),t)=-cos(x(t))-2*x(t)*\operatorname{cos}(x(t)*x(t))*\operatorname{cos}(2*y(t)):
ic:=x(0)=0,y(0)=Pi/2 :
with(DEtools):
DEplot({de1, de2},{x(t),y(t)},t=-5..5,[[ic]]);
```

