Mathematics 5410 DEplot Revision

Example. Solve the antihistamine problem

$$
\left\{\begin{array}{l}
x^{\prime}=F(t)-k_{1} x, \\
y^{\prime}=k_{1} x-k_{2} y, \\
x(0)=0, \quad y(0)=0
\end{array}\right.
$$

numerically for

$$
k_{1}=0.6931, \quad k_{2}=0.0462
$$

and

$$
F(t)=12 \sum_{j=0}^{20}(H(t-6 j)-H(t-6 j-0.5)) .
$$

Plot the graphic of $y(t)$ on the window $0 \leq t \leq 120,0 \leq y \leq 60$. See Borrelli-Coleman, page 72 .

Solution: In Maple, the code to find and plot $y(t)$ is as follows.

```
H:=x->piecewise(x<0,0,1):
F:=x->12*sum(H(x-6*jj)-H(x-6*jj-0.5),jj=0..20):
k1:=0.6931:k2:=0.0462:
de:=diff(x(t),t)=F(t)-k1*x(t),
    diff(y(t),t)=k1*x(t)-k2*y(t):
ic:=[x(0)=0,y(0)=0]:
with(DEtools):
DEplot([de],[x(t),y(t)],t=0..120,[ic],scene=[t,y],stepsize=0.05);
```

Problem 1. Solve the problem

$$
\left\{\begin{array}{l}
x^{\prime}=F(t)-k_{1} x, \\
y^{\prime}=k_{1} x-k_{2} y, \\
x(0)=0, \quad y(0)=0
\end{array}\right.
$$

numerically for

$$
k_{1}=0.6931, \quad k_{2}=0.0462,0.0231,0.0077
$$

and

$$
F(t)=12 \sum_{j=0}^{20}\left(\begin{array}{c}
H(t-6 j)-H(t-6 j-0.5)) \\
1
\end{array}\right.
$$

Plot the three graphics of $y(t)$ on a single plot over $0 \leq t \leq 120,0 \leq y \leq 60$. See Borrelli-Coleman, page 72 .

Example. Solve the finite escape time problem for

$$
\left\{\begin{array}{l}
y^{\prime}=4 y^{2}, \\
y(0)=1
\end{array}\right.
$$

and justify the escape time $T=1 / 4$ mathematically.
Solution: In Maple, the code to find and plot $y(t)$ is as follows.

```
de:=diff(y(t),t)=4*y(t)*y(t):
ic:=[y(0)=1]:
with(DEtools):
DEplot([de],[y(t)],t=0..0.25,[ic],stepsize=0.05);
```

The argument to find $T=1 / 4$ is separation of variables. The solution from this method is $y=1 /(1-4 t)$.

Problem 2. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=y^{2} \\
y(0)=1
\end{array}\right.
$$

numerically and plot to determine the finite escape time $T=1$. Justify $T=1$ mathematically by a separation of variables argument and submit this mathematical justification with the computer program.

Problem 3. Solve the problem

$$
\left\{\begin{array}{l}
y^{\prime}=0.1(y-3)(y-1)(y+1), \\
y(0)=y_{0}
\end{array}\right.
$$

numerically for $y_{0}=-3$ to 5 in steps of 0.5 . Plot the sixteen solutions on the window $-5 \leq x \leq 5,-3 \leq y \leq 5$.

