Systems of Differential Equations and Laplace's Method

- Solving $\boldsymbol{x}^{\prime}=\boldsymbol{C} \boldsymbol{x}$
- The Resolvent
- An Illustration for $\mathrm{x}^{\prime}=C \mathrm{x}$
- Solving $\boldsymbol{x}^{\prime \prime}=\boldsymbol{A} \boldsymbol{x}$

Solving $\boldsymbol{x}^{\prime}=\boldsymbol{C x}$
Apply L to each side to obtain $L\left(\mathrm{x}^{\prime}\right)=C L(\mathrm{x})$. Use the parts rule

$$
L\left(\mathrm{x}^{\prime}\right)=s L(x)-\mathrm{x}(0)
$$

to obtain

$$
\begin{array}{ll}
s L(\mathrm{x})-\mathrm{x}(0) & =L(C \mathrm{x}) \\
s L(\mathrm{x})-L(C \mathrm{x}) & =\mathrm{x}(0) \\
s I L(\mathrm{x})-C L(\mathrm{x}) & =\mathrm{x}(0) \\
(s I-C) L(\mathrm{x}) & =\mathrm{x}(0) .
\end{array}
$$

Resolvent

The inverse of $\boldsymbol{s} \boldsymbol{I}-\boldsymbol{C}$ is called the resolvent, a term invented to describe the equation

$$
L(\mathrm{x}(t))=(s I-C)^{-1} \mathrm{x}(0) .
$$

An Illustration for $\mathrm{x}^{\prime}=\boldsymbol{C x}$
Define $C=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right), \mathrm{x}=\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}}, \mathrm{x}(0)=\binom{\mathbf{1}}{2}$, which gives a scalar initial value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=2 x_{1}(t)+3 x_{2}(t) \\
x_{2}^{\prime}(t)= \\
x_{1}(0)=1 \\
x_{2}(0)=2
\end{array}\right.
$$

Then the adjugate formula $A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}$ gives the resolvent

$$
(s I-C)^{-1}=\frac{1}{(s-2)(s-4)}\left(\begin{array}{rr}
s-4 & -3 \\
0 & s-2
\end{array}\right)
$$

The Laplace transform of the solution is then

$$
L(\mathrm{x}(t))=(s I-C)^{-1}\binom{1}{2}=\binom{\frac{s-10}{(s-2)(s-4)}}{\frac{2}{s-4}}
$$

Partial fractions and use of the backward Laplace table imply

$$
\mathrm{x}(t)=\binom{4 e^{2 t}-3 e^{4 t}}{2 e^{4 t}}
$$

Laplace Operations on $\boldsymbol{x}^{\prime \prime}=\boldsymbol{A} \boldsymbol{x}$
Apply L to each side to obtain $L\left(\mathrm{x}^{\prime \prime}\right)=A L(\mathrm{x})$. Use the parts rule to obtain

$$
\begin{array}{ll}
L\left(\mathrm{x}^{\prime \prime}\right) & =s(s L(\mathrm{x})-\mathrm{x}(0))-\mathrm{x}^{\prime}(0) \\
s^{2} L(\mathrm{x})-s \mathrm{x}(0)-\mathrm{x}^{\prime}(0) & =A L(\mathrm{x}) \\
\left(s^{2} I-A\right) L(\mathrm{x}) & =s \mathrm{x}(0)+\mathrm{x}^{\prime}(0) \\
L(\mathrm{x}(t)) & =\left(s^{2} I-A\right)^{-1}\left(s \mathrm{x}(0)+\mathrm{x}^{\prime}(0)\right)
\end{array}
$$

Resolvent Formula

The inverse of $s^{2} \boldsymbol{I}-\boldsymbol{C}$ is also called a resolvent, and we have the equation

$$
L(\mathrm{x}(t))=\left(s^{2} I-A\right)^{-1}\left(s \mathrm{x}(0)+\mathrm{x}^{\prime}(0)\right)
$$

Formal Solution of $\mathrm{x}^{\prime \prime}=A \mathrm{x}$

$$
\mathrm{x}(t)=L^{-1}\left(\left(s^{2} I-A\right)^{-1}\left(s \mathrm{x}(0)+\mathrm{x}^{\prime}(0)\right)\right)
$$

