Orthogonality

- Orthogonal Vectors
- Unitization
- Orthogonal and Orthonormal Set
- Independence and Orthogonality
- Inner Product Spaces
- Fundamental Inequalities
- Pythagorean Relation

Orthogonality

Definition 1 (Orthogonal Vectors)

Two vectors \mathbf{u}, \mathbf{v} are said to be orthogonal provided their dot product is zero:

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

If both vectors are nonzero (not required in the definition), then the angle $\boldsymbol{\theta}$ between the two vectors is determined by

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=0
$$

which implies $\boldsymbol{\theta}=\mathbf{9 0}^{\circ}$. In short, orthogonal vectors form a right angle.

Unitization

Any nonzero vector \mathbf{u} can be multiplied by $\boldsymbol{c}=\frac{1}{\|\mathbf{u}\|}$ to make a unit vector $\mathbf{v}=\mathbf{c u}$, that is, a vector satisfying $\|\mathrm{v}\|=1$.

This process of changing the length of a vector to 1 by scalar multiplication is called unitization.

Orthogonal and Orthonormal Set

Definition 2 (Orthogonal Set of Vectors)
A given set of nonzero vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ that satisfies the orthogonality condition

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0, \quad i \neq j
$$

is called an orthogonal set.

Definition 3 (Orthonormal Set of Vectors)
A given set of unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ that satisfies the orthogonality condition is called an orthonormal set.

Independence and Orthogonality

Theorem 1 (Independence)

An orthogonal set of nonzero vectors is linearly independent.

Proof: Let c_{1}, \ldots, c_{k} be constants such that nonzero orthogonal vectors u_{1}, \ldots, u_{k} satisfy the relation

$$
c_{1} \mathrm{u}_{1}+\cdots+c_{k} \mathbf{u}_{k}=0
$$

Take the dot product of this equation with vector \mathbf{u}_{j} to obtain the scalar relation

$$
c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{j}+\cdots+c_{k} \mathbf{u}_{k} \cdot \mathbf{u}_{j}=0
$$

Because all terms on the left are zero, except one, the relation reduces to the simpler equation

$$
c_{j}\left\|\mathbf{u}_{j}\right\|^{2}=0
$$

This equation implies $c_{j}=0$. Therefore, $c_{1}=\cdots=c_{k}=0$ and the vectors are proved independent.

Inner Product Spaces

An inner product on a vector space \boldsymbol{V} is a function that maps a pair of vectors \mathbf{u}, \mathbf{v} into a scalar $\langle\mathbf{u}, \mathbf{v}\rangle$ satisfying the following four properties.

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ [symmetry]
2. $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$ [additivity]
3. $\langle c u, v\rangle=c\langle u, v\rangle$ [homogeneity]
4. $\langle\mathbf{u}, \mathbf{u}\rangle \geq \mathbf{0},\langle\mathbf{u}, \mathbf{u}\rangle=\mathbf{0}$ if and only if $\mathbf{u}=\mathbf{0}$ [positivity]

The length of a vector is then defined to be $\|\mathbf{u}\|=\sqrt{\langle\mathbf{u}, \mathbf{u}\rangle}$.
A vector space \boldsymbol{V} with inner product defined is called an inner product space.

Fundamental Inequalities
Theorem 2 (Cauchy-Schwartz Inequality)
In any inner product space \boldsymbol{V},

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\| .
$$

Equality holds if and only if u and v are linearly dependent.

Theorem 3 (Triangle Inequality)
In any inner product space \boldsymbol{V},

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

Pythagorean Relation

Theorem 4 (Pythagorean Identity)

In any inner product space V,

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

if and only if \mathbf{u} and \mathbf{v} are orthogonal.

