Variation of Parameters

- Variation of Parameters
- Homogeneous Equation
- Independence
- Variation of Parameters Formula
- Examples: Independence, Wronskian.
- Example: Solve $\boldsymbol{y}^{\prime \prime}+\boldsymbol{y}=\sec \boldsymbol{x}$ by variation of parameters,

Variation of Parameters

The method of variation of parameters applies to solve

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \tag{1}
\end{equation*}
$$

- Continuity of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{f} is assumed, plus $\boldsymbol{a}(\boldsymbol{x}) \neq 0$.
- The method is important because it solves the largest class of equations.
- Specifically included are functions $f(x)$ like $\ln |x|,|x|, e^{x^{2}}$. Such functions are excluded in the method of undetermined coefficients.

Homogeneous Equation

The method of variation of parameters uses facts about the homogeneous differential equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \tag{2}
\end{equation*}
$$

Success in the method depends upon writing the general solution of (2) as

$$
\begin{equation*}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \tag{3}
\end{equation*}
$$

where $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ are known functions and $\boldsymbol{c}_{1}, \boldsymbol{c}_{\boldsymbol{2}}$ are arbitrary constants. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are constants, then the standard recipe for (2) implies \boldsymbol{y}_{1} and \boldsymbol{y}_{2} are independent atoms.

Independence

Two solutions $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ of $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{y}^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}$ are called independent if neither is a constant multiple of the other. The term dependent means not independent, in which case either $\boldsymbol{y}_{1}(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{y}_{2}(\boldsymbol{x})$ or $\boldsymbol{y}_{2}(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{y}_{1}(\boldsymbol{x})$ holds for all \boldsymbol{x}, for some constant \boldsymbol{c}.

Independence can be tested through the Wronskian of $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$, defined by

$$
W(x)=\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

Theorem 1 (Wronskian and Independence)
The Wronskian of two solutions satisfies $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{W}^{\prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{W}=0$, which implies Abel's identity

$$
W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x}(b(t) / a(t)) d t}
$$

Two solutions of $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{y}^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}$ are independent if and only if their Wronskian is nonzero at some point \boldsymbol{x}_{0}.

Variation of Parameters Formula

Theorem 2 (Variation of Parameters Formula)

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}$ be continuous near $\boldsymbol{x}=\boldsymbol{x}_{0}$ and $\boldsymbol{a}(\boldsymbol{x}) \neq 0$. Let $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ be two independent solutions of the homogeneous equation $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{y}^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=$ 0 and let $\boldsymbol{W}(\boldsymbol{x})=\boldsymbol{y}_{1}(\boldsymbol{x}) \boldsymbol{y}_{2}^{\prime}(\boldsymbol{x})-\boldsymbol{y}_{1}^{\prime}(\boldsymbol{x}) \boldsymbol{y}_{2}(\boldsymbol{x})$. Then the non-homogeneous differential equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)
$$

has a particular solution

$$
y_{p}(x)=\left(\int \frac{y_{2}(x)(-f(x))}{a(x) W(x)} d x\right) y_{1}(x)+\left(\int \frac{y_{1}(x) f(x)}{a(x) W(x)} d x\right) y_{2}(x)
$$

The variation of parameters formula is so named because it expresses $\boldsymbol{y}_{p}=c_{1} \boldsymbol{y}_{1}+c_{2} \boldsymbol{y}_{2}$, where c_{1} and c_{2} are functions of x, whereas $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ with c_{1}, c_{2} constants.

1 Example (Independence) Consider $y^{\prime \prime}-y=0$. Show the two solutions $\sinh (x)$ and $\cosh (x)$ are independent using Wronskians.
Solution. Let $\boldsymbol{W}(\boldsymbol{x})$ be the Wronskian of $\sinh (x)$ and $\cosh (x)$. The calculation below shows $\boldsymbol{W}(\boldsymbol{x})=-1$. By Theorem 1, the solutions are independent.
Background. The calculus definitions for hyperbolic functions are

$$
\sinh x=\left(e^{x}-e^{-x}\right) / 2, \quad \cosh x=\left(e^{x}+e^{-x}\right) / 2
$$

Their derivatives are $(\sinh \boldsymbol{x})^{\prime}=\boldsymbol{\operatorname { c o s h }} \boldsymbol{x}$ and $(\boldsymbol{\operatorname { c o s h }} \boldsymbol{x})^{\prime}=\sinh \boldsymbol{x}$. For instance, $(\cosh x)^{\prime}$ stands for $\frac{1}{2}\left(e^{x}+e^{-x}\right)^{\prime}$, which evaluates to $\frac{1}{2}\left(e^{x}-e^{-x}\right)$, or $\sinh x$. Wronskian detail. Let $\boldsymbol{y}_{1}=\sinh \boldsymbol{x}, \boldsymbol{y}_{2}=\cosh \boldsymbol{x}$. Then

$$
\begin{aligned}
W & =y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x) \\
& =\sinh (x) \sinh (x)-\cosh (x) \cosh (x) \\
& =\frac{1}{4}\left(e^{x}-e^{-x}\right)^{2}-\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2} \\
& =-1
\end{aligned}
$$

Definition of Wronskian \boldsymbol{W}.
Substitute for $\boldsymbol{y}_{1}, \boldsymbol{y}_{1}^{\prime}, \boldsymbol{y}_{2}, \boldsymbol{y}_{2}^{\prime}$.
Apply exponential definitions.
Expand and cancel terms.

2 Example (Wronskian) Given $2 y^{\prime \prime}-x y^{\prime}+3 y=0$, verify that a solution pair y_{1}, y_{2} has Wronskian $W(x)=W(0) e^{x^{2} / 4}$.
Solution
Let $\boldsymbol{a}(\boldsymbol{x})=2, \boldsymbol{b}(x)=-\boldsymbol{x}, \boldsymbol{c}(x)=3$. The Wronskian is a solution of

$$
W^{\prime}=-(b / a) W
$$

Then $W^{\prime}=x \boldsymbol{W} / \mathbf{2}$. The solution by growth-decay theory is

$$
W=W(0) e^{x^{2} / 4}
$$

3 Example (Variation of Parameters) Solve $y^{\prime \prime}+\boldsymbol{y}=\sec \boldsymbol{x}$ by variation of parameters, verifying $y=c_{1} \cos x+c_{2} \sin x+x \sin x+\cos (x) \ln |\cos x|$.

Solution

Homogeneous solution \boldsymbol{y}_{h}. Apply the recipe for constant equation $\boldsymbol{y}^{\prime \prime}+\boldsymbol{y}=0$. The characteristic equation $r^{2}+1=0$ has roots $r= \pm i$ and $y_{h}=c_{1} \cos x+c_{2} \sin x$. Wronskian. Suitable independent solutions are $y_{1}=\cos x$ and $y_{2}=\sin x$, taken from the recipe. Then $W(x)=\cos ^{2} x+\sin ^{2} x=1$.
Calculate \boldsymbol{y}_{p}. The variation of parameters formula (2) applies. Integration proceeds near $\boldsymbol{x}=0$, because $\sec (x)$ is continuous near $\boldsymbol{x}=0$.

$$
\begin{align*}
y_{p}(x) & =-y_{1}(x) \int y_{2}(x) \sec (x) d x+y_{2}(x) \int y_{1}(x) \sec x d x \tag{1}\\
& =-\cos x \int \tan (x) d x+\sin x \int 1 d x \\
& =x \sin x+\cos (x) \ln |\cos x|
\end{align*}
$$

Details: 1 Use equation (2). 2 Substitute $\boldsymbol{y}_{1}=\cos \boldsymbol{x}, \boldsymbol{y}_{2}=\sin \boldsymbol{x}$. 3 Integral tables applied. Integration constants set to zero.

